

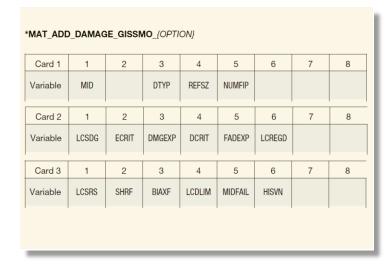
German LS-DYNA Forum 2018

News about the add-on failure and damage models in LS-DYNA

Tobias Erhart, DYNAmore Filipe Andrade, DYNAmore

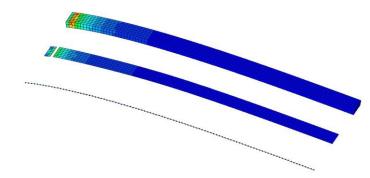
Bamberg, 16 October 2018

Overview


- Add-on failure and damage models
 - *MAT ADD EROSION
 - *MAT ADD GENERALIZED DAMAGE (eGISSMO)
- Update about new developments over last 1-2 years
 - Clear arrangement of input: new keywords
 - Extended availability: beams, quadratic elements, ...
 - New failure criteria
 - New options for damage (GISSMO)
 - Further enhancements

Clear arrangement of input

- Separation into pure failure and damage models
 - *MAT ADD EROSION: only failure criteria remain
 - New keyword *MAT ADD DAMAGE GISSMO
 - New keyword *MAT ADD DAMAGE DIEM
- Available in R11
 - New options will be added exclusively to the new keywords
 - Of course, old inputs still work



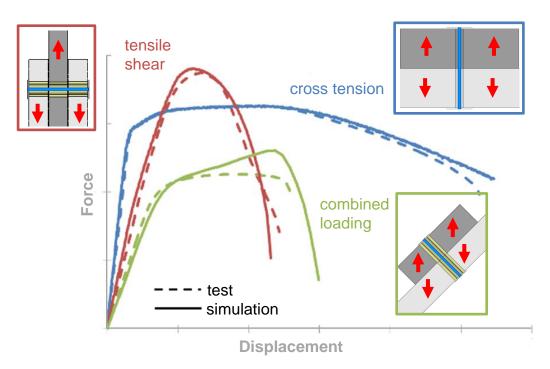
Beam elements

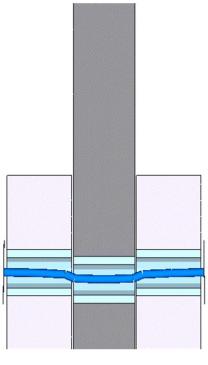
- Damage models DIEM and GISSMO
 - Now both support beam element type 1 (Hughes-Liu with cross section integration)
 - Triaxiality actually varies (non-zero transverse shear stresses):

$$\eta = \frac{-p}{\sigma_{vm}} = \frac{\sigma_{xx}/3}{\sqrt{\sigma_{xx}^2 + 3(\sigma_{yz}^2 + \sigma_{zx}^2)}}$$

 Could be interesting for sophisticated bolt modeling or similar applications

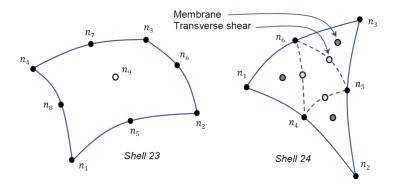
cantilever - tip displacement: solid, shell, and beam elements

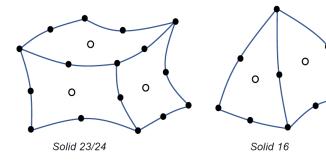




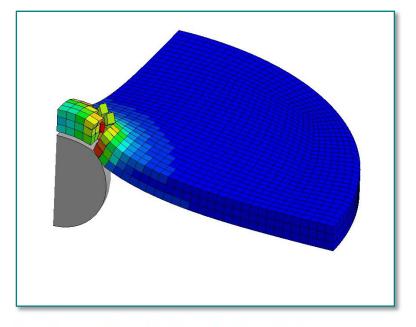
Beam elements

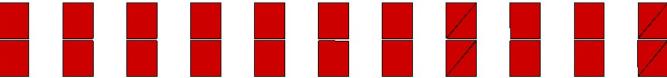
Application: bolt modeling (H-L beams and GISSMO)




Courtesy of Daimler AG

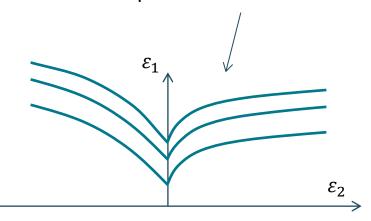
Higher-order elements


- Quadratic shells type 23 and 24
 - Mainly intended for implicit analysis
 - But also available in explicit
 - Now fully support the add-on failure and damage models
- Quadratic solids type 16, 23, and 24
 - Also available for explicit and implicit
 - Also fully support the add-on failure and damage models



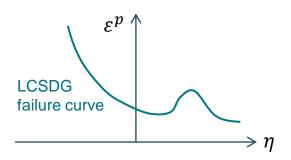
Simple node splitting method

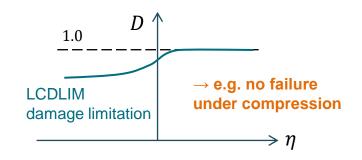
- Initially tied nodes open up after failure
 - Related keyword:
 *CONSTRAINED TIED NODES FAILURE
 - Duplicate/coincident shell or solid nodes not merged but tied in the beginning
 - A failure variable is responsible for opening up the connection
 - Now supports GISSMO damage

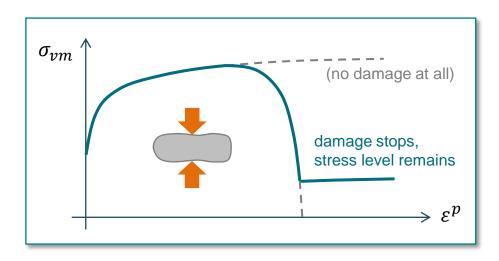


New failure criteria

- New options in *MAT ADD EROSION
 - Maximum temperature: MXTMP
 - Minimum timestep: DTMIN
 - Strain rate dependent FLD: Table LCFLD>0
 - Thickness dependent FLD: Table LCFLD<0</p>

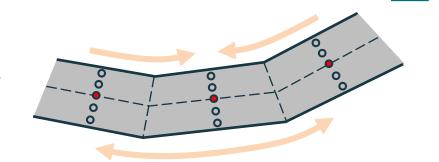

e.g. laser cutting

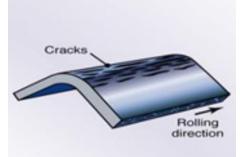




Damage limitation

- New option LCDLIM for GISSMO
 - Define limit for damage value (< 1.0)</p>
 - Curve input: function of triaxiality
 - No damage accumulation afterwards
 - Similar approach as "SLIM" in composite materials 54, 58, ...

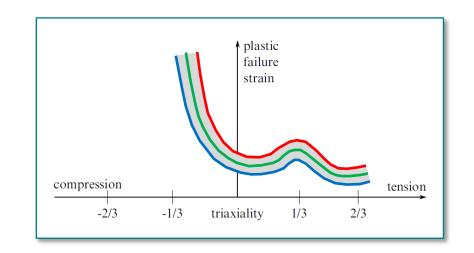


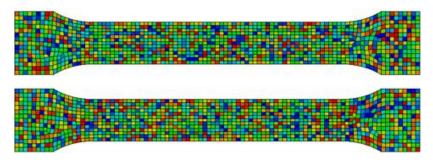




Mid-plane failure

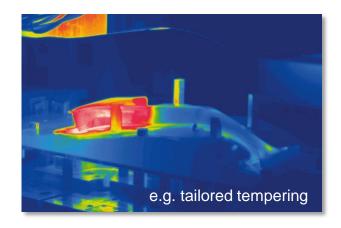
- Potential improvement for shell elements under bending
 - Default: evaluation of instability at each integration point through thickness
 - Failure often too early in bending dominated problems
 - New MIDFAIL flag to locate critical strain evaluation at the mid-plane integration point
 - Several options (MIDFAIL = 1, 2, 3) to govern final failure and the behavior of the remaining IP's





Stochastic distribution

- Spatially varying failure behavior
 - New option _STOCHASTIC for
 *MAT_ADD_DAMAGE_GISSMO
 - Failure strain can be varied through definitions in
 - *DEFINE_STOCHASTIC_VARIATION
 - different distribution types (uniform, Gaussian, ...)
 - e.g. in case of scattering of material properties in manufacturing

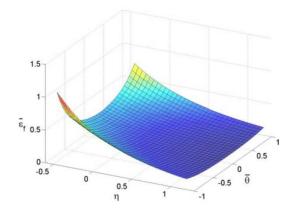

Tailored failure

- Additional history variable governs failure strain
 - New option HISVN allows input of constant value (>0) or location (<0) in *INITIAL STRESS SHELL/SOLID
 - Makes failure strain a 3-dimensional table

$$\varepsilon_f^p = \varepsilon_f^p(\eta, \bar{\theta}, \text{HISV})$$

- HISV could be hardness, porosity, pre-strain, ...
- Similar approach is used for history-dependent yield stress in

$$\sigma_{\rm v} = \sigma_{\rm v}(\eta, \bar{\theta}, {\rm HISV})$$

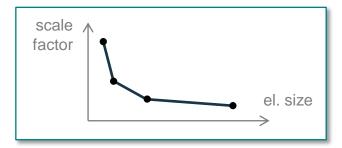


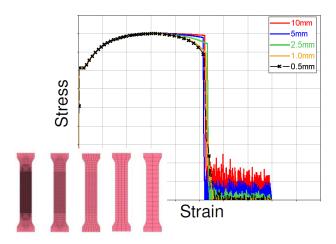
Analytical failure function

- Alternative input for failure strain curve/surface
 - Instead of curve or table input (LCSDG>0), an analytical function can be defined (LCSDG<0) using *DEFINE_FUNCTION with arguments triaxiality and Lode parameter
 - Direct implementation of equations from relevant literature, e.g.,
 Johnson-Cook, Wierzbicki, Mohr, e.g.,

$$\bar{\varepsilon}_f = \left\{ \frac{A}{c_2} \left[\sqrt{\frac{1 + c_1^2}{3}} \cos\left(\frac{\bar{\theta}\pi}{6}\right) + c_1 \left(\eta + \frac{1}{3} \sin\left(\frac{\bar{\theta}\pi}{6}\right)\right) \right] \right\}^{-\frac{1}{n}}$$

Mohr-Coulomb criterion in Bai and Wierzbicki (2001)

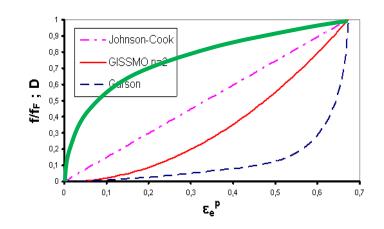




Mesh dependence: Regularization in GISSMO

- So far: Failure strain is function of element size
 - Curve LCREGD
- Allows calibration of (uniaxial) test data with different mesh sizes

- Now: 2 new table options
 - Table LCREGD>0: failure strain is function of rate and element size
 - Table LCREGD<0: failure strain is function of triaxiality and element size (more general approach than using reduction factors SHRF and BIAXF)



Nonlinear damage accumulation

- Improvements for unusual damage evolution
 - In most cases, DMGEXP is 1.0 or greater in this equation: $\Delta D = \frac{\mathrm{DMGEXP} \times D^{\left(1 \frac{1}{\mathrm{DMGEXP}}\right)}}{\varepsilon_f} \Delta \varepsilon_p$
 - which means that damage increases slowly in the beginning and faster in the end
 - But non-metallic materials might show a contrary behavior, requiring DMGEXP<1</p>
 - Already worked before to some extent, but now really made robust even for very small values

Mapping in process simulation

- Transfer of result quantities between process operations
 - e.g., from forming to crash: different discretization levels (element sizes)
 - GISSMO offers option REFSZ>0 from the beginning
 - reference size related damage output on history variable ND+9
 - New option REFSZ<0 works a little differently</p>
 - Reference size related plastic strain is computed first (hisvar ND+15):

$$\Delta \varepsilon_{ref}^{p} = \frac{\varepsilon_{f}^{p}(|\text{REFSZ}|) - \varepsilon_{crit}^{p}}{\varepsilon_{f}^{p}(l_{e}) - \varepsilon_{crit}^{p}} \Delta \varepsilon^{p} \quad \text{ (if } F \geq 1)$$

$$\Delta D_{ref} = \frac{\mathrm{DMGEXP}}{\varepsilon_f^p(|\mathrm{REFSZ}|)} D_{ref}^{\ 1-1/\mathrm{DMGEXP}} \ \Delta \varepsilon_{ref}^p$$

Summary and outlook

- Add-on failure and damage models under constant development
 - Requests from customers
 - Efficiency
 - Generalizations
- More improvements to come
 - Non-local options (reduce strength in neighbors to failed elements)
 - Dependance on more and more variables (e.g. temperature)
 - User interface for damage models
 - **...**

Your questions, please

