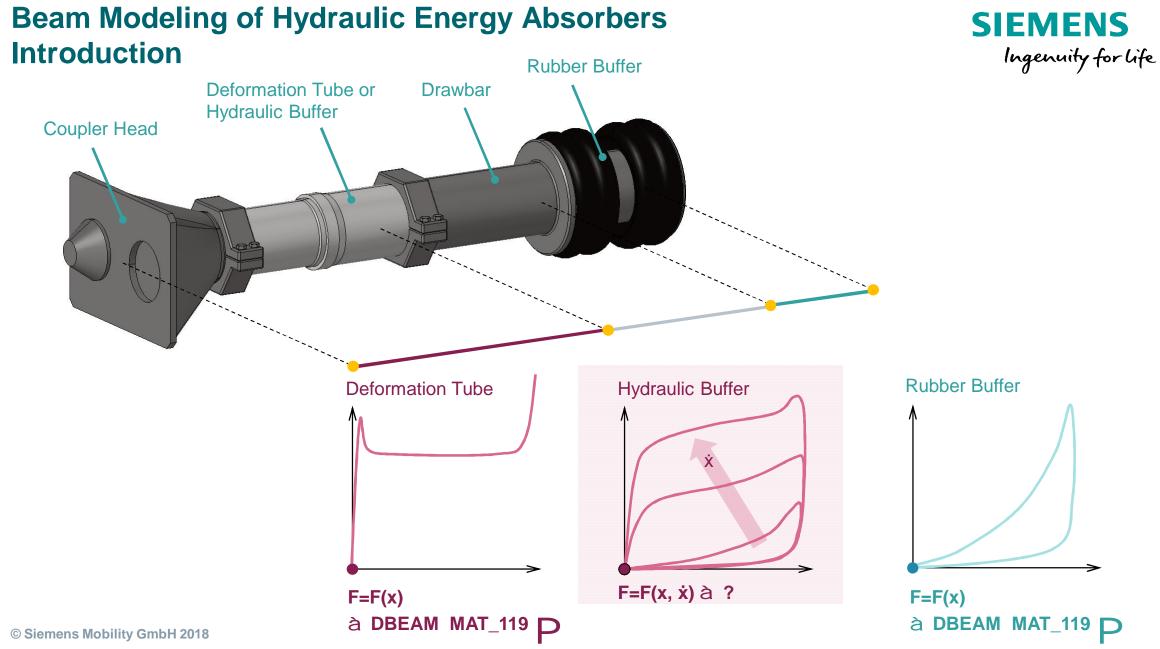
Beam Modeling of Hydraulic Energy Absorbers

Dr. Philipp Heinzl, Richard Graf, Glenn Gough, Christoph Schmied

© Siemens Mobility GmbH 2018

siemens.com/mobility

SIEMENS


Ingenuity for life

Beam Modeling of Hydraulic Energy Absorbers Table of content

Introduction	3
Beam Material MAT_24	6
Beam Material MAT_70	7
Beam Material MAT_121	8
 LS-Dyna UMAT programming, DBEAM 	9
Beam User Material UMAT	11
Conclusion	12

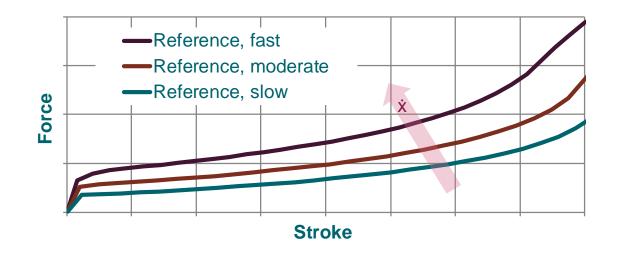
Page 3 16.10.2018

Dr. Philipp Heinzl, Richard Graf, Glenn Gough (Siemens Mobility), Christoph Schmied (DynaMore GmbH)

Beam Modeling of Hydraulic Energy Absorbers Introduction – Task

The coupler beam shall be modeled as simple as possible and numerically efficient but authentically in its force vs. stroke behavior.

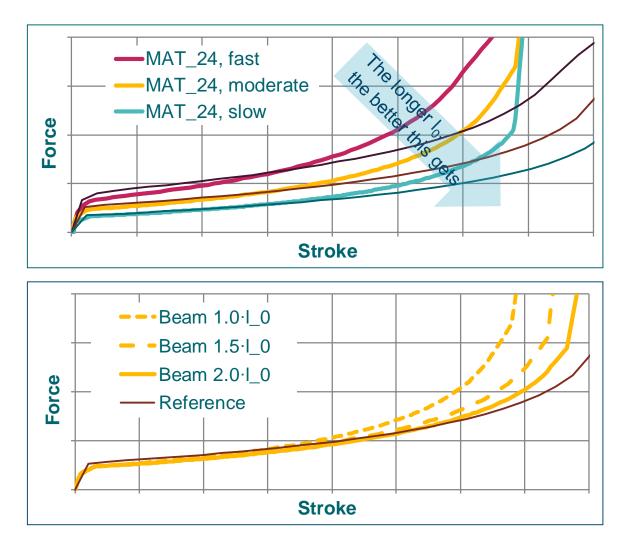
Preconditions:


- 1 The whole coupler is to be modeled as series of beam elements.
- **2** The coupler length shall be represented correctly.
- **3** DBEAMS (discrete beam elements) are preferred.
- 4 The behavior of hydraulic energy absorbers is presumed to be described by series of forcestroke characteristics for a multitude of actuation speeds.

Beam Modeling of Hydraulic Energy Absorbers Introduction – Modeling Approaches

Four modelling approaches for a given series of characteristics are presented:

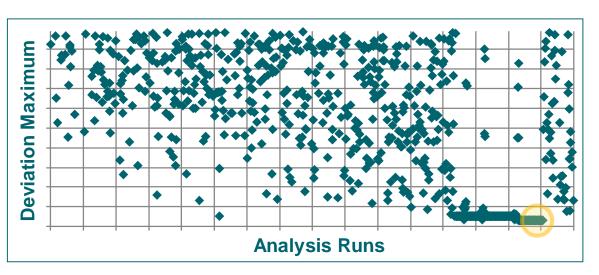
- **MAT_24** MAT_PIECEWISE_LINEAR_PLASTICITY
- **MAT_70** MAT_HYDRAULIC_GAS_DAMPER_DISCRETE_BEAM
- **MAT_121** MAT_GENERAL_NONLINEAR_1DOF_DISCRETE_BEAM
- UMAT User Defined Interpolation within Series of Characteristics



Beam Modeling of Hydraulic Energy Absorbers MAT_24 – MAT_PIECEWISE_LINEAR_PLASTICITY

- ELFORM 1 → no DBEAM
- $F(x,\dot{x}) \rightarrow \sigma(\varepsilon,\dot{\varepsilon})$
- But if \dot{x} is constant $\dot{\varepsilon}$ won't be constant:

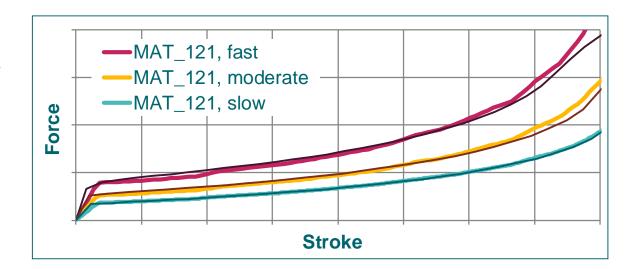
$$\dot{x} = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$
 but $\dot{\varepsilon} = \lim_{\Delta t \to 0} \frac{\Delta \varepsilon}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$


Beam Modeling of Hydraulic Energy Absorbers MAT_70 – MAT_HYDRAULIC_GAS_DAMPER_DISCRETE_BEAM

- Discrete Beam
- Physical model of a gas-hydraulic damper
- Force formula:

$$F(x,\dot{x}) = S_F \left\{ c_H \left(\frac{\dot{x}}{a(x)} \right)^2 + \left[p_0 \left(\frac{l_0}{l_0 - x} \right)^n - p_a \right] \cdot A_p \right\}$$

- 10 parameters defined
- Optimization:
 - Genetic algorithm
 - Max. deviations \rightarrow Min
 - ~2000 runs, ~10 iterations and ~10 attempts
 → ~200000 runs in total



Beam Modeling of Hydraulic Energy Absorbers MAT_121 – MAT_GENERAL_NONLINEAR_1DOF_DISCRETE_BEAM

- Discrete Beam
- A base curve can be offset velocity dependently and gradients can be adjusted displacement dependently (definable via two curves)
- Simple and fast approach
- Similarity of reference curves helpful
- Could also be improved by optimization

Beam Modeling of Hydraulic Energy Absorbers LS-Dyna UMAT programming – How to get started

Literature

- 1 LS Dyna Manual Appendix A à General Information, example codes, tabval-routine, ...
- 2 Erhart, T.: "An Overview of User-Defined Interfaces in LS-DYNA", 9. LS-DYNA Forum 2010

à User Interfaces in general

Kleinbach, Ch. et al.: "Implementation and validation of the extended Hill-type muscle model with robust routing capabilities in LS-DYNA for active human body models", BioMed Eng
 OnLine, 2017
 à Source Codes, e.g. information of how to extract kinematic data, ...

To get actually started follow this steps:

- Get the proper User Material Package (operating system, mpi, ...)
- Edit the file dyn21.f (e.g. urmatd for DBEAMs, umat41 ... umat50)
- Compile an own LS Dyna executable

© Siemens Mobility GmbH 2018 Page 9 16.10.2018

Beam Modeling of Hydraulic Energy Absorbers LS-Dyna UMAT programming – DBEAM specific UMAT issues

urmatd

common/aux14loc/

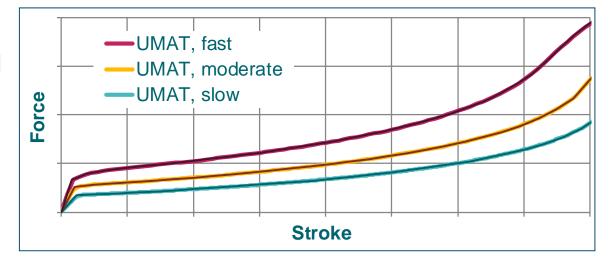
- 1 sig1(nlq),sig2(nlq),sig3(nlq),sig4(nlq),
- 2 sig5(nlq),sig6(nlq),epsps(nlq),hsvs(nlq,71),
- 3 el12(nlq),el22(nlq),el32(nlq),el18(nlq),el28(nlq),el38(nlq)

umat43 (e.g.)

```
capa(i)=capa(i)+F_hydro_mean*delta_1
```

```
...
sig(1)=F_hydro ...
sig(6)=0.0
```

urmatd


ell2(i)	=-sigl(i)
el22(i)	=-sig2(i)
el38(i)	=-sig6(i)

© Siemens Mobility GmbH 2018 Page 10 16.10.2018

Dr. Philipp Heinzl, Richard Graf, Glenn Gough (Siemens Mobility), Christoph Schmied (DynaMore GmbH

Beam Modeling of Hydraulic Energy Absorbers UMAT – User Defined Interpolation within Series of Characteristics

- Discrete Beam
- Series of curves is interpolated displacement and velocity dependently (tabval-routine)
- End stops are already integrated (linear model from end stops on)

* MAT_USER_DEFINED_MATERIAL_MODELS				
ID	[Rho]	UMAT 43	5 parameters	[NHV]
1 0 4	7.850e-06	43	5	
[IVECT]	[IFAIL]	[ITHERM]	[IHYPER]	[IEOS]
End stop stiffness	End stop damping	Block length	Series of curves	Unloading curve
1000.000	100.000	200.000	1.000	2.000

Beam Modeling of Hydraulic Energy Absorbers Conclusion

- All presented approaches can lead to acceptable results.
- Their individual pros and cons are highlighted and the results are compared.
- Once the UMAT programming hurdle is cleared this definitely is the most preferable approach since the given series of curves is always matched perfectly.

Contact page

Dr. Philipp Heinzl Crash Simulation MO RS EN CB SE2 CA DME

Siemens Mobility GmbH Leberstrasse 34 A-1110 Wien/Vienna +43 5 1707 41382

philipp.heinzl@siemens.com

Christoph Schmied DYNAmore Support

DYNAmore GmbH Industriestr. 2 D-70565 Stuttgart

+49 711 459600 11

christoph.schmied@dynamore.de

siemens.com/mobility

dynamore.de

© Siemens Mobility GmbH 2018 Page 13 16.10.2018

Dr. Philipp Heinzl, Richard Graf, Glenn Gough (Siemens Mobility), Christoph Schmied (DynaMore GmbH)