Christopher Ortmann und Axel Schumacher Lehrstuhl für Optimierung mechanischer Strukturen Workshop "Nichtlineare Topologieoptimierung crashbeanspruchter Fahrzeugstrukturen"

UNIVERSITÄT

Finden von Regeln für topologische Änderungen von Crashstrukturen

Axel Schumacher, Uni Wuppertal

Workshop "Nichtlineare Topologieoptimierung crashbeanspruchter Fahrzeugstrukturen" Stuttgart, 23. September 2013

Inhalt

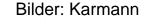
- Herausforderungen bei der Crashauslegung
- Ablauf einer regelbasierten Optimierung
- Brainstorming-Meetings bei Crash-Experten
- Realisierte Heuristiken

Herausforderungen bei der Crashauslegung

Übliche Restriktionen im Crash

• Berücksichtigung spezieller Beschleunigungswerte, z.B.

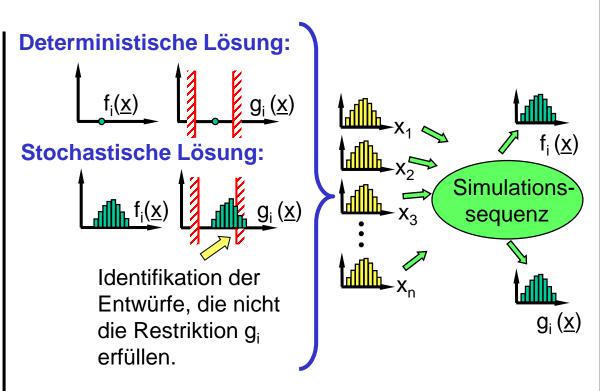
HIC = max
$$\left\{ \left[\frac{1}{t_2 - t_1} \cdot \int_{t_1}^{t_2} a(t) dt \right]^{2,5} \cdot (t_2 - t_1) \right\}$$

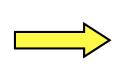

- Energieabsorption,
- Spezielle Kraftniveaus,
- Glatte Beschleunigungs-Zeit-Kurven,
- Spezielle Lastpfade für spezielle Lastfälle,
- Hohe Steifigkeiten in speziellen Bereichen,
 - z.B. Komponenten im Kraftfluss im Fahrgastbereich
- Geringe Steifigkeiten in speziellen Bereichen,

z.B. an den möglichen Kopfaufprallpositionen,

• Spezielle Sicherheitskritierien,

z.B. Dichtigkeit des Kraftstoffsystems

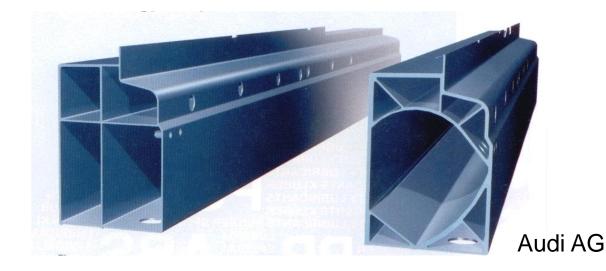




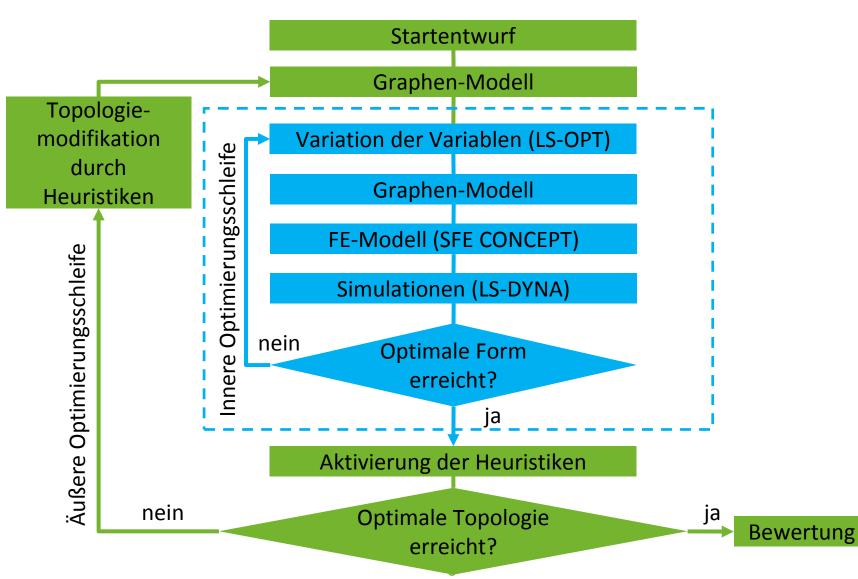
Eigenschaften von Crashstrukturen

- keine glatten
 Struktureigenschaften
- wenig verlässliche Materialdaten
- Streuung der Materialdaten
- netzabhängige
 Ergebnisse
- physikalische
 Verzweigungspunkte
- rechnerische Verzweigungspunkte
- Simulationsmodelle f
 ür ein bestimmtes Design

In der mathematischen Optimierung haben wir es also mit diesen Problemen zu tun.



Ablauf einer regelbasierten Optimierung


Anwendung: Strangpressprofile

- Große Relevanz in der Crashauslegung
- Große Design-Freiheit
- Relativ geringer Aufwand in der Geometrieerstellung durch die Verwendung eines konstanten Profilquerschnitts

Ablauf der regelbasierten Optimierung

Brainstorming-Meetings bei Crash-Experten

Beteiligte Experten aus folgenden Unternehmen:

- Adam Opel AG,
- Porsche AG,
- Daimler AG
- Volkswagen Osnabrück GmbH

Sammlung von mehr als 150 unterschiedlichen Gestaltungsregeln für crashbelastete Strukturen

Sortierte Gestaltungsregeln (1)

Erhöhung der Steifigkeit von Crashstrukturen:

- Abstützen von Komponenten mit Stabilitätsproblemen
- Erhöhung von Eckensteifigkeiten
- Einbau von Y-Strukturen
- Aufteilen hoch belasteter Strukturen
- Keine gekrümmten Formen
- Ausnutzen des Bauraums
- Füllern großer Leerräume
- Kreisstrukturen bei Torsionsbelastung

• . . .

Reduzierung der Steifigkeit von Crashstrukturen:

- Einbau von Crashelementen
- Einbau gekrümmter Komponenten
- Einbau dreieckiger Aussparungen

•

Sortierte Gestaltungsregeln (2)

Vereinfachungen:

- Löschen unbelasteter Komponenten
- Verwendung von möglichst wenigen Kammern

• . . .

Ausgleichen der Energiedichte:

- Homogenisierung der Größen der Beulfelder
- Verwendung ähnlicher Wanddicken

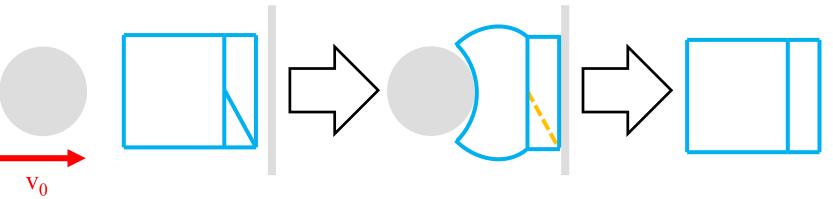
• . . .

Anforderungen aus der Fertigung:

- Verwendung bestimmter Wanddicken
- Verwendung bestimmter Kreuzungswinkel der Komponenten
- Verwendung bestimmter Mindestabstände der Komponenten

• . .

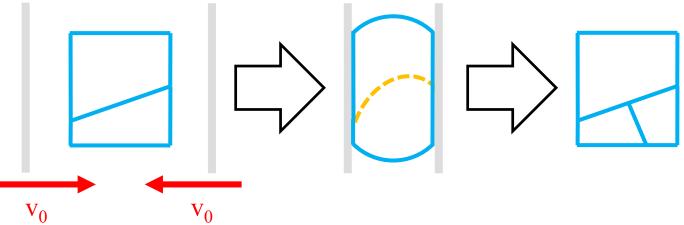
Realisierte Heuristiken


Arbeitsweise der Heuristiken

- Heuristiken benutzen Simulationsdaten (Verschiebungen, Geschwindigkeiten, Energien, etc.) der letzten Iteration.
- Typen von Heuristiken:
 - Heuristiken zur Topologieänderung
 - Heuristiken zur Formänderung und Dimensionierung
- Heuristiken zur Topologieoptimierung konkurrieren untereinander und werden über die Berechnung der Vorschläge bewertet.
- Die Heuristiken sind entstanden aus der Algorithmierung von intuitiv verwendetem Expertenwissen.

Heuristik - "Entfernen unbelasteter Wände"

 Entfernung von in Relation zum Rest der Struktur wenig beanspruchten inneren Wänden.


 Kriterium hierf
ür ist die
über die gesamte L
änge der Struktur aufsummierte innere Energiedichte der W
ände.

$$u_{b_{i},l_{k}} = \frac{U_{b_{i},l_{k}},\max}{V_{b_{i}}} \qquad u_{b_{i},l_{k}}^{*} = \frac{u_{b_{i},l_{k}}}{\frac{1}{I} \cdot \sum_{i=1}^{I} u_{b_{i},l_{k}}} \qquad \frac{-}{u_{b_{i}}}^{*} = \frac{1}{K} \cdot \sum_{k=1}^{K} u_{b_{i},l_{k}}^{*}$$

Heuristik - "Abstützen sich schnell deformierender Wände"

 Abstützen einer Wand, welcher sich mit höheren Geschwindigkeiten deformiert als der Rest der Struktur.

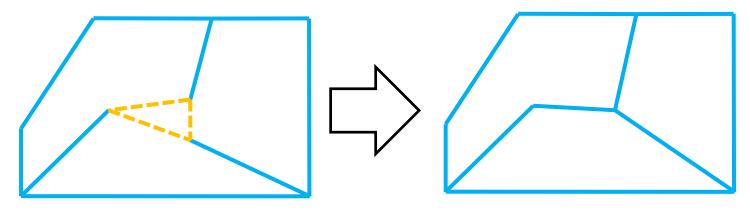
- Homogenisierung des Beul- oder Deformationsverhaltens der Struktur.
- Anwendung: a) Wände, die der Intrusion durch andere Körper

wenig Widerstand entgegen setzen,

b) instabile Wände.

• Verwendete Simulationsdaten: Geschwindigkeitsvektoren FE-Knoten.

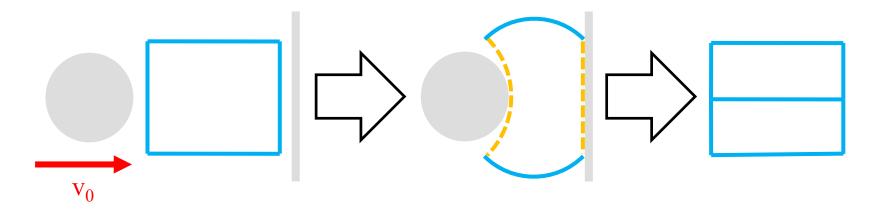
Identifikationsformel der Heuristik "Abstützen sich schnell deformierender Wände"


$$\alpha_{b_i,l_k} = \frac{1}{\left(L_{b_i,l_k}^2 - L_{b_i,l_k}\right) \cdot \frac{1}{2} \cdot N_{l_k}} \cdot \sum_{n=1}^{N_{l_k}} \sum_{l=1}^{L_{b_i,l_k}} \sum_{m=(l+1)}^{L_{b_i,l_k}} \frac{\Delta v_{e_{l_m},b_i,l_k,t_n}}{\Delta d_{e_{l_m},b_i,l_k}}$$

$$\alpha_{b_i,l_k}^* = \frac{\alpha_{b_i,l_k}}{\frac{1}{I} \cdot \sum_{i=1}^{I} \alpha_{b_i,l_k}}$$

Heuristik - "Entfernen kleiner Kammern"

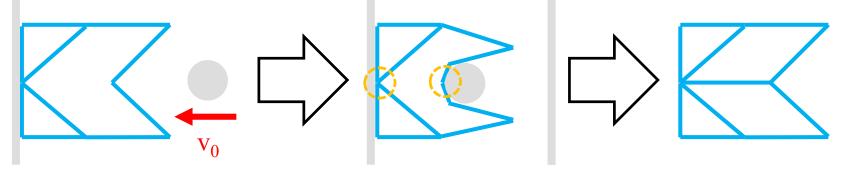
 Entfernung von Kammern, welche aus drei Wänden bestehen, von denen mindestens einer eine definierte Mindestlänge unterschreitet.



 Es werden nur dreiseitige Kammern behandelt, da während der Gestaltoptimierung eine n-seitige in eine 3-seitige Kammer reduziert werden kann, eine weitere Reduzierung aber nur über eine Topologieänderung möglich ist.

Heuristik - "Ausgleichen der Energiedichte"

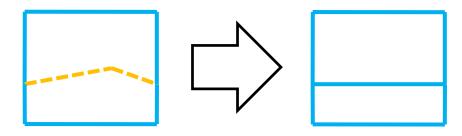
 Es wird ein Paar aus Wänden miteinander verbunden, die eine möglichst hohe Differenz an aufgenommener Energie aufweisen.



- Durch das Verbinden von belasteten mit unbelasteten Bereichen soll die Verteilung der inneren Energiedichte homogenisiert werden.
- Verwendete Simulationsdaten: über die gesamte Länge der Struktur aufsummierte innere Energiedichte der Wände.

Heuristik - "Ausnutzen des Deformationsraums"

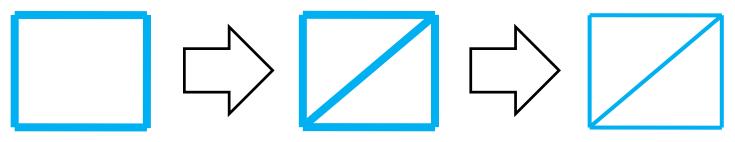
 Es werden Punkte des Profilquerschnitts miteinander verbunden, die in Relation zum Anfangsabstand eine hohe relative Verschiebung zueinander aufweisen.



- Bessere Ausnutzung des zur Verfügung stehenden Deformationsraums
- Verwendete Simulationsdaten: Verschiebungen der FE-Knoten in einer vorgegebenen Analyseebene.

Heuristik - "Glätten der Struktur"

- Vereinfachung der Struktur durch das Glätten von Knicken im Inneren der Struktur.
- Hierdurch wird die Anzahl der Entwurfsvariablen in der inneren Optimierungsschleife reduziert.



- Konkurriert nicht mit anderen Heuristiken, da keine Topologieänderung.
- Aktivierung nach jeder Topologieänderung der Struktur.

Heuristik - "Skalieren der Wanddicken"

 Skalierung der Wanddicken der Struktur, um eine vorgegebene Masse zu erreichen.

- Konkurriert nicht mit anderen Heuristiken, da keine Topologie
 änderung.
- Aktivierung nach jeder Topologieänderung der Struktur, damit die Masse der Struktur sich durch die Topologieänderung nicht verändert.

Zusammenfassung und Diskussion

- Wenn mathematische Verfahren einsetzbar sind, werden sie eingesetzt.
- Sind mathematische Verfahren nicht vorhanden, können Heuristiken hilfreich sein.
- Es fehlen derzeit mathematische Verfahren zur Topologieoptimierung von Crashstrukturen. Hier kommen die Heuristiken zum Einsatz.
- Mathematische Verfahren in der inneren Schleife der Formoptimierung bewerten und korrigieren die Heuristiken.