Umformen von Mehrschichtverbunden/ Sandwichen

M. Pichler (4a manufacturing GmbH), P. Reithofer (4a engineering GmbH)

29.10.2010 Infotag Umformen

INHALT

Vorstellung 4a-Gruppe

Textilverbunde

Erfolgsstory "Handylautsprecher"

Potential der Mehrschichtverbunde

Wirtschaftlichkeit

Umformen

Beispiele

Zusammenfassung

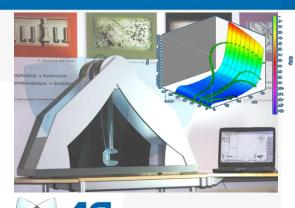
UNTERNEHMENSGRUPPE

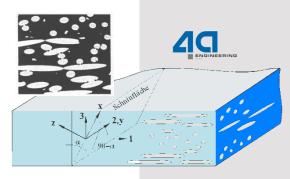
UNTERNEHMENSGRUPPE

UNTERNEHMENSBEREICHE

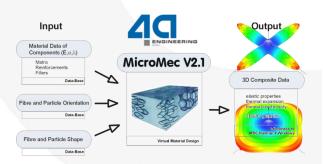
- Gründungsjahr 2002
- F&E Dienstleistung
- 15 bis 20 Kernkunden
- bisher mehr als 500 Projekte
 - 45% Automotive
 - 15% Luft- und Raumfahrt
 - 15% Maschinenbau
 - 10% Medizintechnik
 - 15% Consumer goods
- Kernkompetenzen
 - Kunststoff- und Werkstoffwissenschaften
 - Numerische Simulationsmethoden
 - Leichtbau und Faserverbundwerkstoffe
 - Methodenentwicklungskompetenz

- Gründungsjahr 2004
- Halbzeuglieferant für Handylautsprecher (> 500 Millionen Stück, 15% Marktanteil)
- Fertigung Verbundwerkstoffe
 - 95% Consumer goods
 - 5% Automotive
- Kernkompetenzen
 - Fertigung von Mehrschichtverbunden mit speziellen Eigenschaften
 - Entwicklung von neuen Materialverbunden
 - Aufbau neuartiger Fertigungsverfahren
 - Herstellung von Prototypen, 0-Serien bis zur Serienproduktion



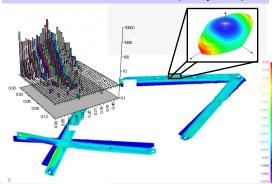

Methodenentwicklungsbeispiele

Leichtbau / Faserverbunde



GFK - Prüfstand

Entwickelt - Gebaut - Geliefert 60 g Beschleunigung eines FG - Dummies BxTxH 14 x 3 x 6 m \rightarrow 800 kg



4a Micromec

Mikromechanik Programm Ermittlung der thermomechanischen Eigen-Schaften von Faserverbunden

4a Impetus

Einzigartiges Pendelprüfsystem Simultane numerische Simulation Automatische Materialkarte (LSDyna...)

4a Fatigue - Composites

Lineare Schadensakkumulation Versagensgesetz nach Puck Berücksichtigung der Anisotropie

4a Bildanalysesystem

Orientierungswinkel aus Schnittellipsen mehrere 1000 Fasern pro Messung Ableitung von 3D Orientierungstensoren

4a Fibermapping

Berücksichtigung der Faserorientierung in Struktursimulation von Kurz- und Langfaser verbundwerkstoffe

MORE

Textile Mehrschichtverbunde Herstellung – Herstellbarkeit und -effizenz

Verkleidung Vordertür

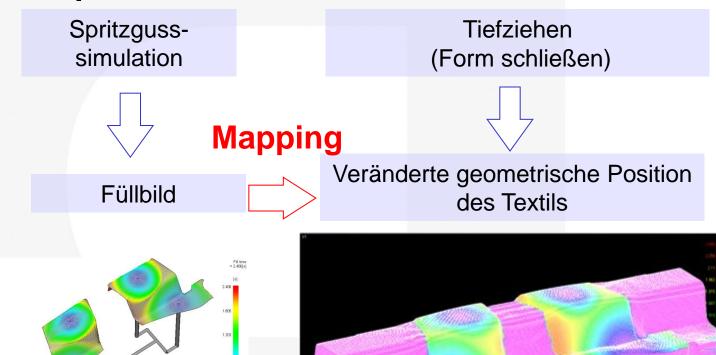
Ziel:

- Herstellbarkeit
- Ästhetik
- Haptik

Technische Untersuchungen:

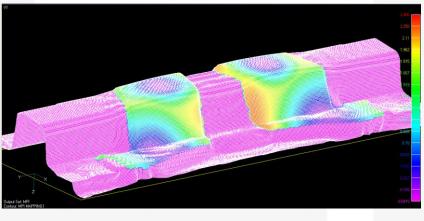
- Tiefziehsimulation
- Virtuelle Verstreckung
- Virtuelle Musterbildung

Mit Hilfe einer Überleitung in ein Visualisierungssystem gibt es eine Basis für Designentscheidungen mit Kunden.



Textile Mehrschichtverbunde Integrative Simulation - Belastungsspezifisch

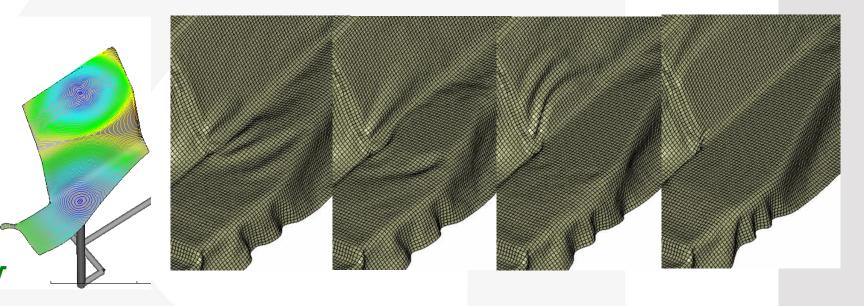
Hinterspritzen von Textilien


Umsetzung erfolgte durch dafür entwickelte Softwareroutinen

Methodenentwicklungsbeispiele Integrative Simulation - Belastungsspezifisch

4a virtual back molding

development of simulation tool of back molding process in textile applications in the field of automotive interiors→ prediction of product behavior



Textile Mehrschichtverbunde Integrative Simulation - Belastungsspezifisch

Fülleinfluss auf Faltenbildung im Zeitraffer

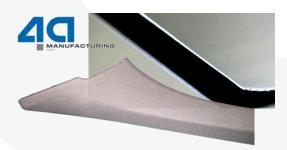
- bessere Beurteilung der Faltenbildung
- besseres Abbilden des Verformungsverhaltens

Produktentwicklungsbeispiele

Leichtbau / Faserverbunde

LH₂ – Innentankaufhängung

geringer Wärmeeintrag in den Innentank Betriebs- und Crashlasten – geringer Platz Performancesteigerung 250%


Lautsprechermembran

Hohe Steifigkeit, geringes Gewicht Hervorragende Klangqualität 2007: 10% Weltmarktanteil

Tourenschibindung

leichtesten schischuhunabhängigen Tourenschibindung der Welt Gewichtsreduktion 40% (Mitbewerb 30%)

4a Mehrschichtverbund

Extremes Leichtbaupotential 20% Gewichtseinsparung gegen CFK 70% Gewichtseinsparung gegen PP

RTM - CFK - Domstrebe

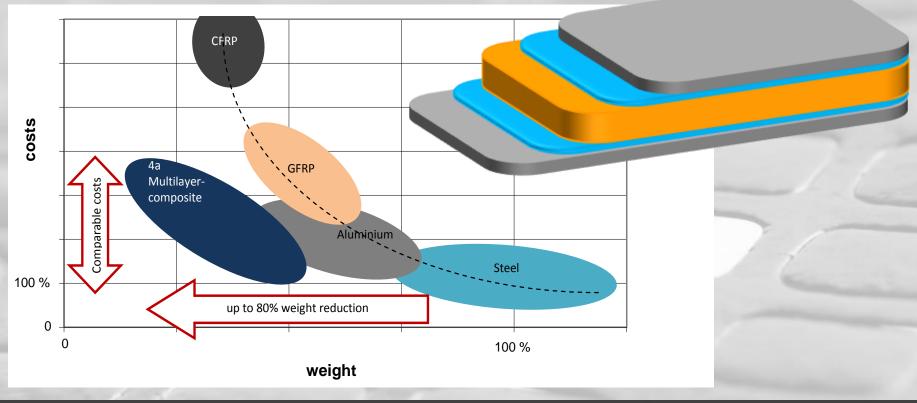
Substitution einer Stahl-Domstrebe aus Stahl durch eine CFK - Lösung 60 % Gewichtsreduktion

MORE

ERFOLGSSTORY "HANDYLAUTSPRECHER"

- > 2004 Entwicklung einer neuen innovativen Lautsprechermembran
- Hohe Steifigkeit, geringes Gewicht
- Rechteckige Bauform für kleines Bauraumvolumen
- Hervorragende Klangqualität
- Hohes Lautstärkeniveau bei sehr geringer Baugröße
- 2009: Einsatz in ca.15% aller weltweit hergestellten Mobiltelefone

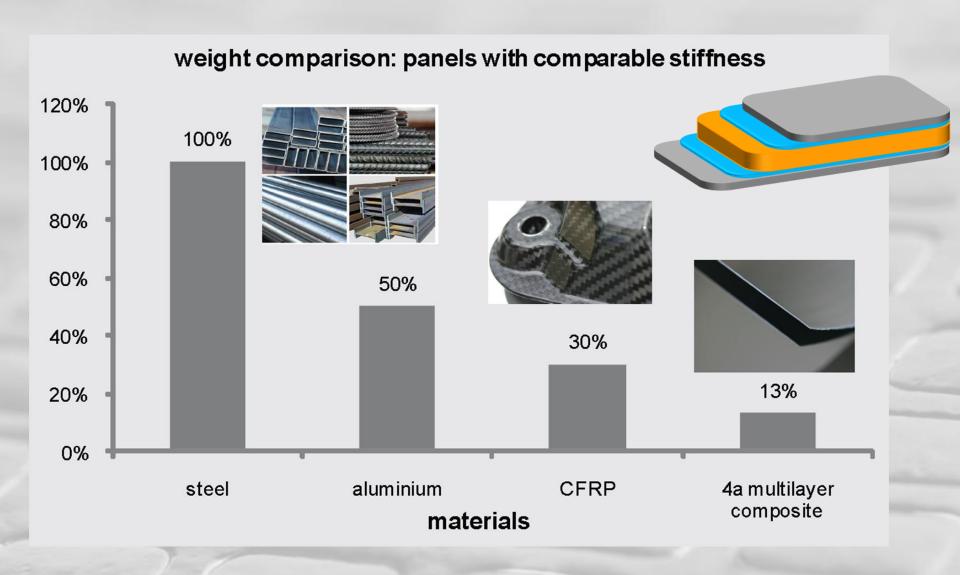
(ca. 280 Mio. Stk.)


GRÜNDE FÜR DEN ERFOLG

- Hohe Steifigkeit
- Niedriges Gewicht
- Dämpfungseigenschaften
- Wirtschaftliche Herstellung

$$(EI)_{ges} = \sum (E_i \cdot I_i)$$

$$(EI)_{ges} = \sum \left(E_i \cdot \left(\frac{b_i \cdot h_i^3}{12} + b_i \cdot h_i \cdot y_i^2 \right) \right)$$



TECHNISCHES POTENTIAL

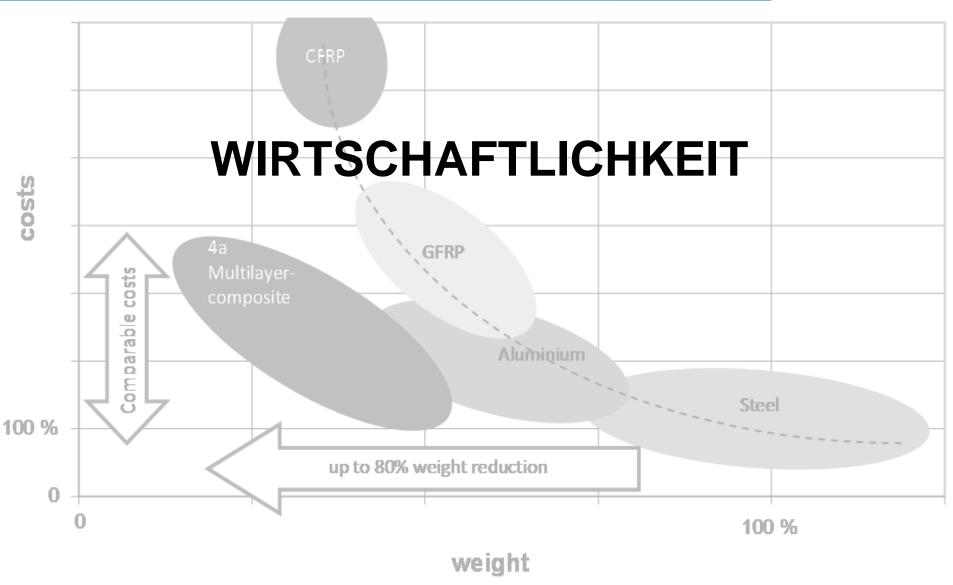
Hohe Steifigkeit bei niedrigem Gewicht

TECHNISCHES POTENTIAL

TECHNISCHES POTENTIAL Umformen

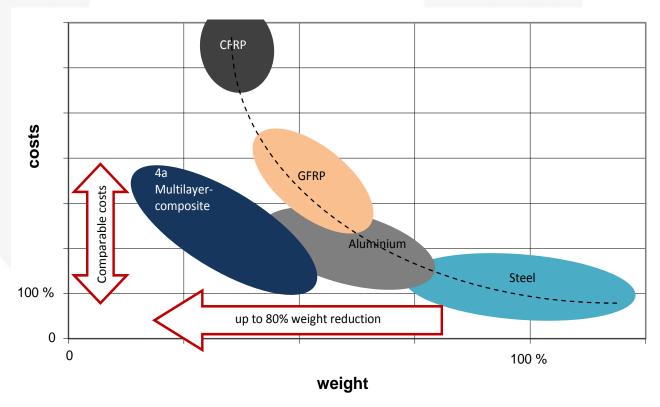
Versuchsbauteil

- > Tiefziehen
- > Streckziehen
- Dehnungen bis 40%
- > Abbildung kleiner Radien möglich



4a Mehrschichtverbund

rep_10102902_pr_mp_jka_umformenmehrschichtverbunde_handout

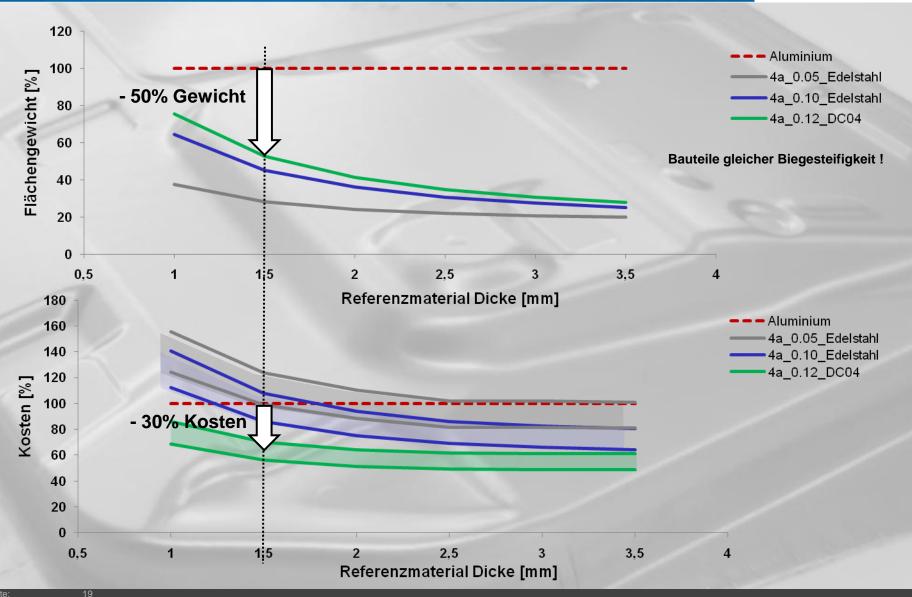


WIRTSCHAFTLICHKEIT

> Anwendungsbezogene Auslegung

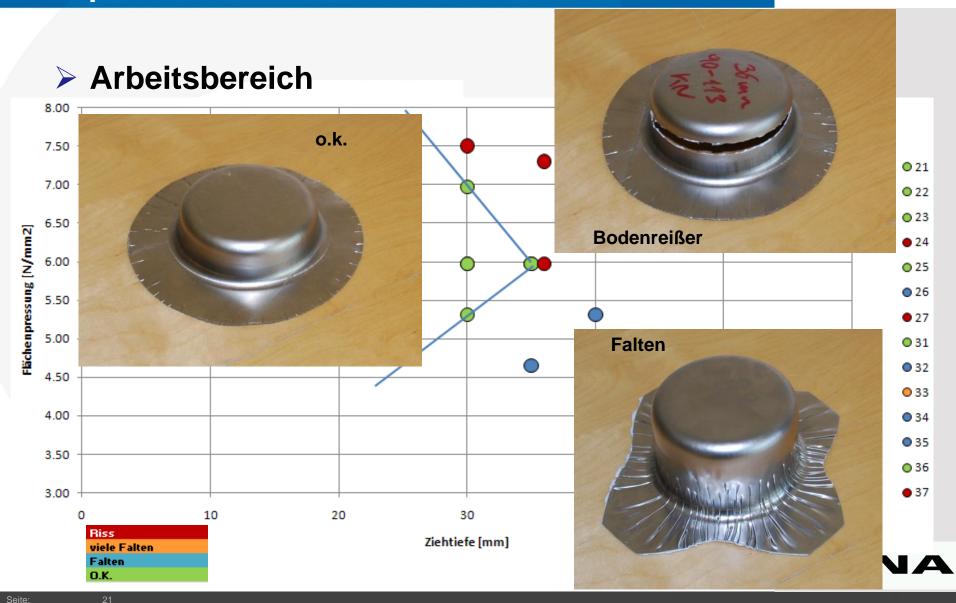
- Materialauswahl
- Dickenverteilung

rep_10102902_pr_mp_jka_umformenmehrschichtverbunde_handout



WIRTSCHAFTLICHES POTENTIAL Kostenvergleich

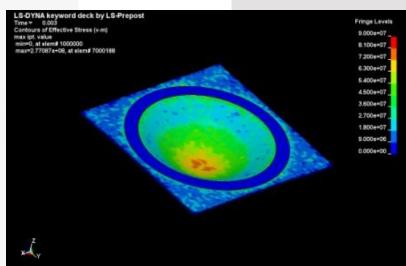
4a Mehrschichtverbund

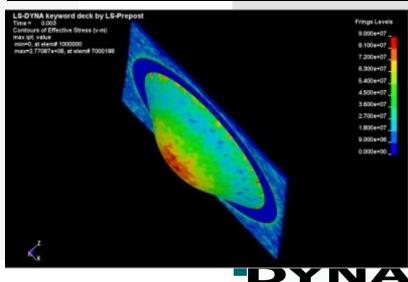


UMFORMEN

Michael Pichler, Peter Reithofer $rep_10102902_pr_mp_jka_umformenmehrschichtverbunde_handout$

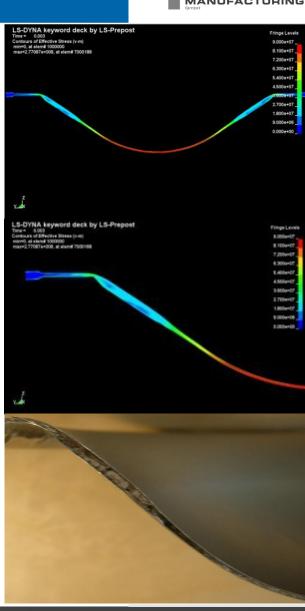
UMFORMEN Napfziehversuche





UMFORMEN Effekte

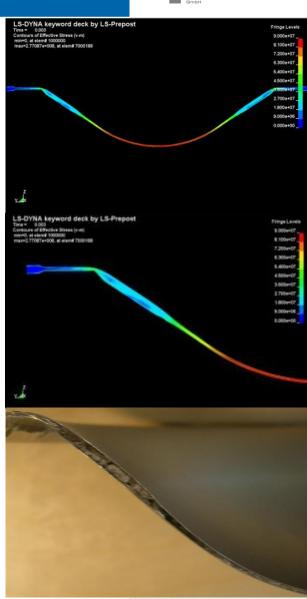
- Gesamtdickenverteilung
- Deckschichtdickenverteilung
- Steifigkeitsänderung
- Versagen der Verbindung
- Decklagenversagen
- Faltenbildung
- Versagen des Kernmaterials



UMFORMEN Simulation

Entwicklung der Simulationsmethodik

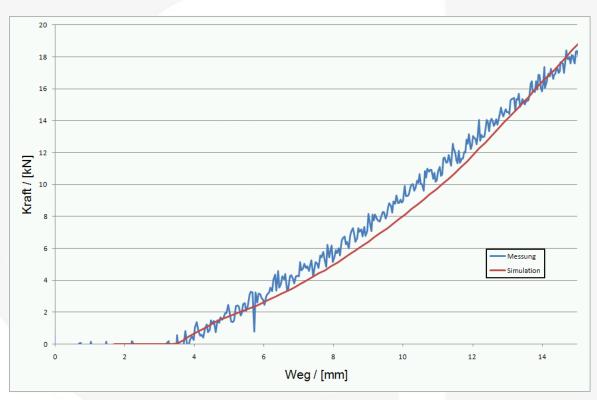
- Modellierung
 - Materialmodell
 - Netzgröße
 - > Rechenzeit
- Abbildung von Effekten
 - Dehnungen
 - Machbarkeitsbeurteilung
 - Werkzeugauslegung
 - Kraftbedarf
 - Werkzeug- bzw. Anlagenauslegung
 - Dickenverteilung
 - Bauteilauslegung (Steifigkeit, Festigkeit)
 - Faltenbildung
 - Machbarkeitsbeurteilung
 - Werkzeugauslegung

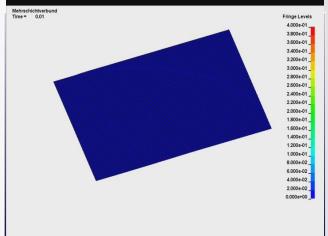

UMFORMEN Modellierung

Aktueller Stand der Simulationsmethodik

- Dünne Decklagen
 - Materialmodell DC04 (*MAT_24)
 - Schalenansatz
- Dicke Schaumschicht
 - Materialmodell (FOAM)
 - Mehrere Solids über der Dicke Kompromiss zwischen Abbildbarkeit und Rechenzeit
- Kleberschicht
 - Aktuell nicht berücksichtigt

rep 10102902 pr mp jka umformenmehrschichtverbunde handout





UMFORMEN Simulation

Umformkraft

rep_10102902_pr_mp_jka_umformenmehrschichtverbunde_handout

4a Mehrschichtverbund

Datum: Autor: Michael Pichler, Peter Reithofer

rep_10102902_pr_mp_jka_umformenmehrschichtverbunde_handout

P

Y S

c s

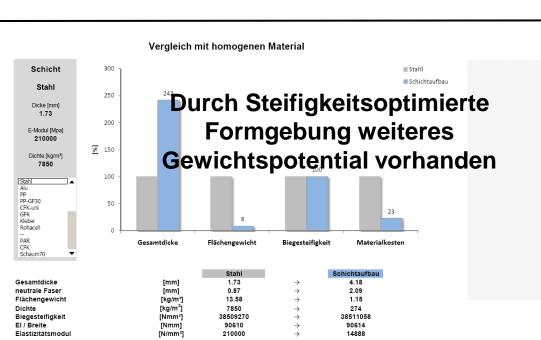
w

E

T R

. u

BEISPIEL Gepäckraumdeckel


4a Gepäckraumdeckel

Stahlverbund

Gesamtverbunddicke: 4.2 mm

Flächengewicht: 1.46 kg/m² \rightarrow 57%

Gewicht -43%

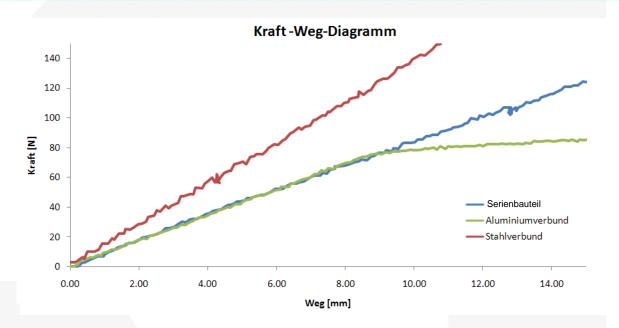
Schichtaufbau

Schicht_1	Schicht_2	Schicht_3	Schicht_4	Schicht_5	Schicht_6	Schicht_7
Stahl	Kleber	Schaum70	Kleber	Stahl		
Dicke [mm] 0.07	Dicke [mm] 0.04	Dicke [mm]	Dicke [mm] 0.04	Dicke [mm] 0.07	Dicke [mm]	Dicke [mm]
E-Modul [Mpa] 210000	E-Modul [Mpa] 800	E-Modul [Mpa] 150	E-Modul [Mpa] 800	E-Modul [Mpa] 210000	E-Modul [Mpa] 0	E-Modul [Mpa] 0
Dichte [kg/m²] 7850	Dichte [kg/m²] 1000	Dichte [kg/m²] 70	Dichte [kg/m³] 1000	Dichte [kg/m³] 7850	Dichte [kg/m³]	Dichte [kg/m²] 0
Stahl Alu PP PP-GF30 CFK-uni GFK Kleber Rohacell	Alu pp PP-GF30 CFK-uni GFK KIleber Rohacell PAR	PAR CFK Schaum70 PE PET GFK_vlies GFK0/90 Aramido/90	Alu pp pP-GF30 CFK-uni GFK Kleber Rohaceli PAR	Stahl Alu PP PP-GF30 CFK-uni GFK Kleber Rohacell	PP PP-GF30 CFK-uni GFK Kleber Rohacell PAR CFK	Stahl Alu pp pp pp-gF30 CFK-uni GFK Kleber Rohacell

Bauteilbreite	b	[mm]	425
Bauteillänge	1	[mm]	980
Gesamtdicke		[mm]	4.22
neutrale Faser		[mm]	2.11
Flächengewicht		[kg/m²]	1.46
Dichte		[kg/m ³]	346
Biegesteifigkeit		[Nmm²]	54254877
El / Breite		[Nmm]	127659
Elastizitätsmodul		[N/mm ²]	20384
Masse		[kg]	0.608

Stahl	0.07
Kleber	0.04
Schaum70	4
Kleber	0.04
Stahl	0.07
-	0
	0

MORE



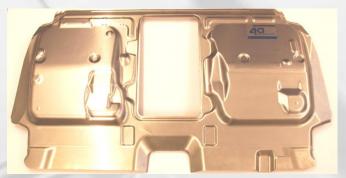
BEISPIEL Gepäckraumdeckel

4a Gepäckraumdeckel **Aluminiumverbund**

Gewicht -28,5%

4a Gepäckraumdeckel **Stahlverbund**

Gewicht -18%



BEISPIEL Rückwand

Vergleich mit Aluminium-Rückwand

Gewichtsreduktion: bis zu 59%

4a Mehrschichtverbund

Dicke:

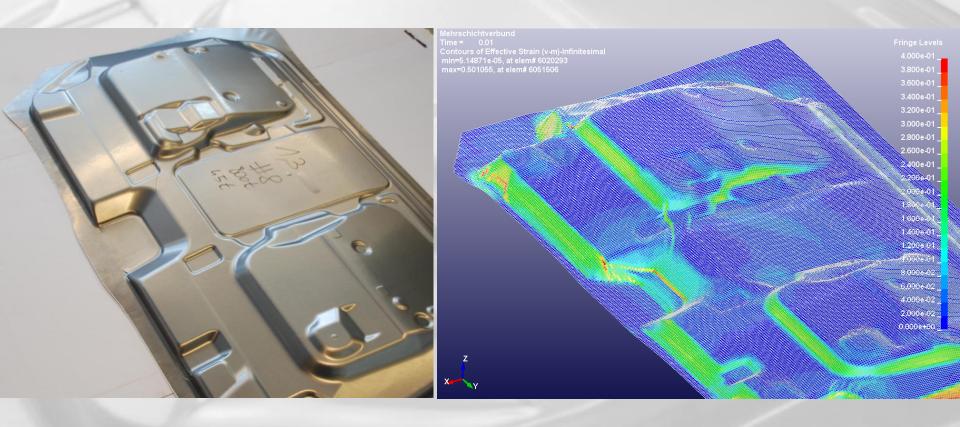
Gewicht:

Hauptabmessungen:

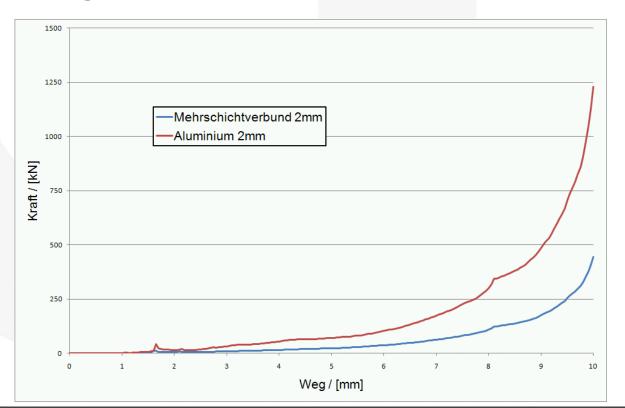
2 mm

2.08 kg/m²

1340 x 765 x 2.0 mm



Vergleich mit der Simulation

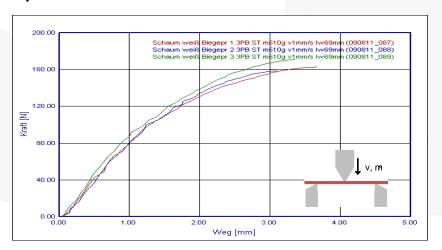

UMFORMEN Kraftniveau

Umformkraft

- > ca. 15% der Umformkraft im Vergleich zu Stahl
- > ca. 30% der Umformkraft im Vergleich zu Aluminium

Kraft-Weg Verlauf Simulation

Simulationsmethoden Ausblick

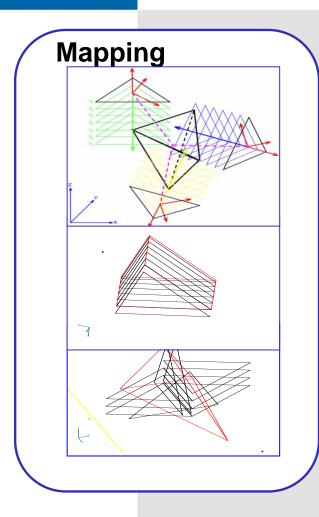


Klebung

Berücksichtigung zur Vorhersage von Delamination

Material modelle

- > FLD Anwendbarkeit überprüfen
- Dynamische Materialdaten (CRASH)
 - → 4a Impetus



Simulationsmethoden **Ausblick**

Modellierung

- Rechenzeiten vs. Modellierung
 - Adaptive Verfeinerung?
 - Dickenmodellierung
- Vereinfachung für CRASH
 - Globale Steifigkeit vs. Lokales Versagen
- Integrative Simulation Mapping Prozess- → Struktursimulation Dickeninformation Kernschicht
 - → Materialeigenschaften
- Fügetechniken

rep 10102902 pr mp jka umformenmehrschichtverbunde handout

ZUSAMMENFASSUNG

- Enormes Leichtbaupotential
- Sehr hohe Steifigkeit bei niedrigem Gewicht
- Sehr gute Umformbarkeit
- Sehr gute Dämpfungseigenschaften
- Variationsvielfalt durch verschieden Werkstoffkombinationen

