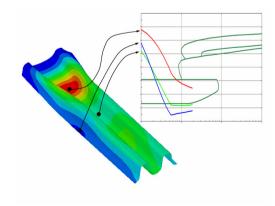
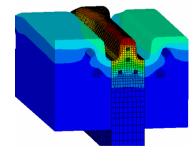
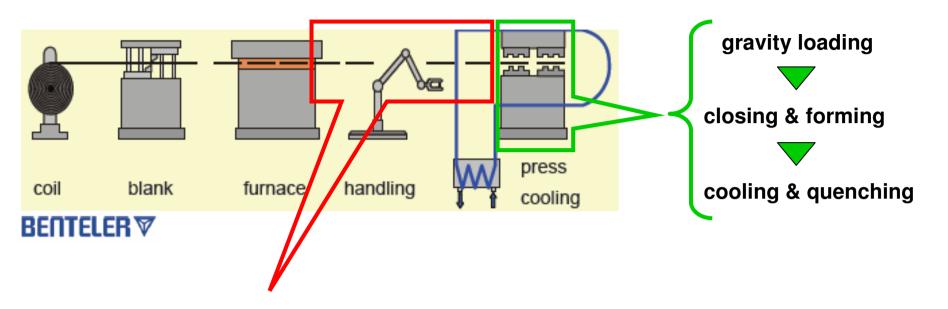

Practical Guidelines for Hot Stamping Simulations with LS-DYNA


David Lorenz DYNAmore GmbH


Outline

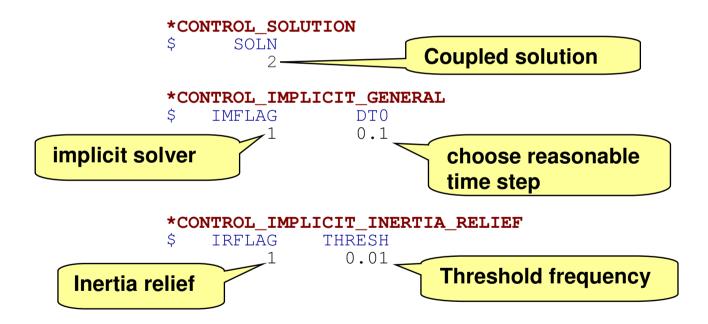
- 1. Important process steps in hot stamping
- 2. Transfer and gravity simulation in hot stamping
- 3. How to model proper material behavior
- 4. Thermal coupling effects
- 5. Notes on thermal contact
- 6. Solution methods for cooling simulations



Important Process Steps in Hot Stamping

Transfer of the hot blank to the die

gravity loading of the hot blank on the die



Transfer Step in Hot Stamping Simulation

During transfer from furnace to the press blank temperature drops due to radiation and convection

We can run this step thermal-mechanical coupled to account for the shrinkage of the blank due to thermal strains

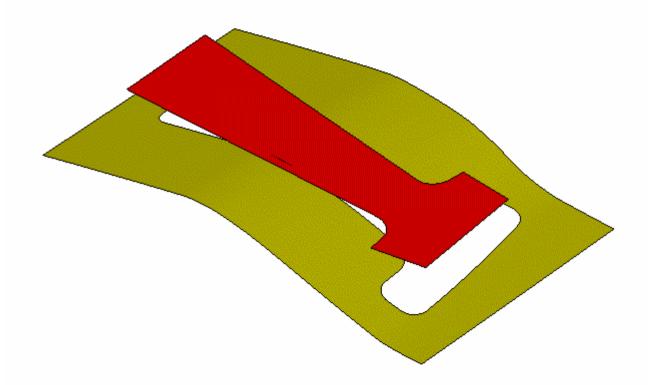
*INTERFACE_SPRINGBACK_LSDYNA

Transfer Step in Hot Stamping Simulation

*CONTROL_IMPLICIT_INERTIA_RELIEF

- static solution without applying SPCs
- advantageous in unconstrained springback calculation
- eliminates all rigis body modes from the stiffness matrix
- All eigenfrequencies below the threshold frequency are treated as rigid body modes and are eliminated
- DYNA runs an eigenvalue analysis prior to the static solution

Why not using SPCs applied to single nodes of the blank?


- all SPCs are written into the dynain file
- these SPCs become redundant in following gravity and forming simulation
- if you do not notice that SPCs are in the dynain file you may run into convergence trouble in the gravity step

Gravity Step in Hot Stamping Simulation

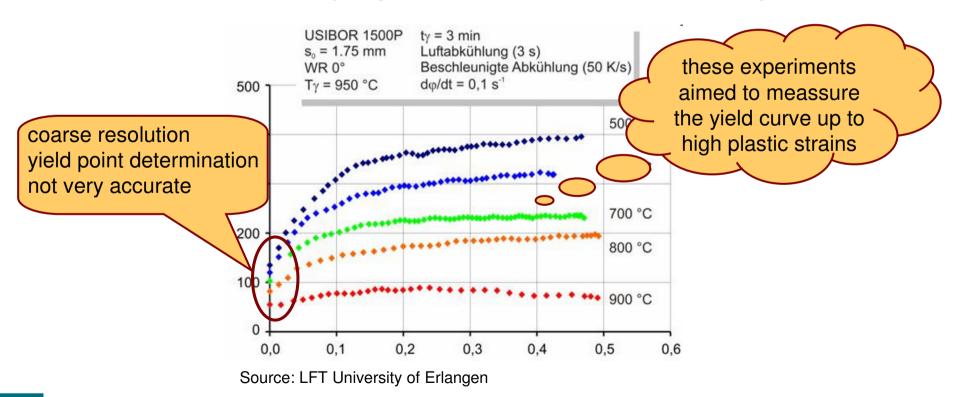
gravity deformation appears immediately

blank typically remains 1 ... 3 s in ^thid position till upper die moved down run in a few coupled steps to account for temperature loss in contact

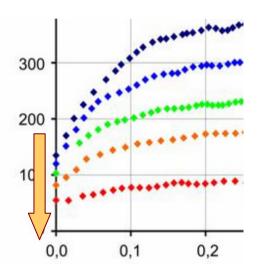
Gravity Step in Hot Stamping Simulation

gravity deformation appears immediately

blank remains typically 1 ... 3 s in till upper die moved down run in a few coupled steps to account for temperature loss in contact


```
*CONTROL SOLUTION
      SOLN
         2
*CONTROL IMPLICIT GENERAL
    IMFLAG
               DT0
             0.01
         1
                               enhanced static solution
*CONTROL IMPLICIT FORMING
      TYPE
*CONTROL IMPLICIT AUTO
     IAUTO
                                       DTMAX
                              DTMIN
                               0.01
                                         0.5
                                                  automatic time stepping
                                                  both mechanics & thermal
*CONTROL THERMAL TIMESTEP
                 ITS
                                        DTEMP
                      DTMIN
                               DTMAX
               0.01
                                 0.5
                       0.01
                                          10.
```


Why is the gravity simulation not in agreement with real process?


- the elastic modulus of hot steel is still higher than cold aluminum
- but the yield point at high temperatures is at very low stress level

Do we accurately capture this effect in our material input?

Solving this shortcoming in material input

- lower the yield point for the relevant temperatures
- bring your simulation into better agreement with your observations and experiences in real process

- make a simple experiment
- validate your material input in agreement to experiment

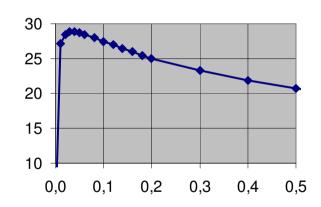
How to get the Cowper Symonds Parameters from given yield curves?

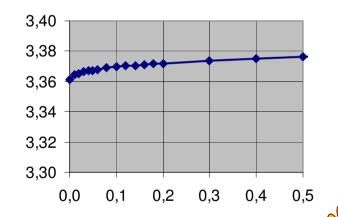
$$\sigma = \sigma_0 \left[1 + \left(\frac{\dot{\varepsilon}}{C} \right)^{\frac{1}{p}} \right] \qquad \qquad \frac{\sigma - \sigma_0}{\sigma_0} = \left(\frac{\dot{\varepsilon}}{C} \right)^{\frac{1}{p}} = \dot{\mathcal{E}}^{\frac{1}{p}} \cdot C^{\frac{-1}{p}}$$

logarithmizing gives an easy to solve linear equation

$$\ln\left[\frac{\sigma - \sigma_0}{\sigma_0}\right] = \frac{1}{p} \ln \dot{\varepsilon} - \frac{1}{p} \ln C$$

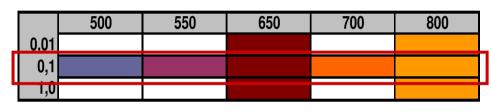
calculate **C** and **p** from slope **m** and intercept **b**


$$p = \frac{1}{m} \qquad C = e^{-b \cdot p}$$



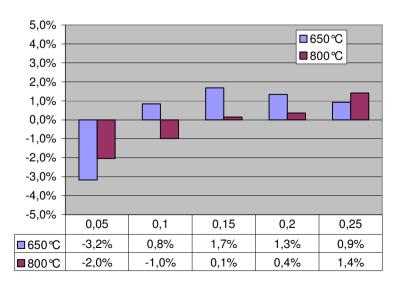
How to get the Cowper Symonds Parameters from given yield curves?

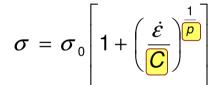
- calculate C and p at different plastic strains (0.1, 0.2, 0.3, ...)
- we need equally spaced yield curves at different strain rates
- curve fit of each yield curve (Swift, Gosh, Hocket-Sherby etc.) necessary
- We end up with $m{c}$ and $m{p}$ as functions of $m{arepsilon}_{pl}$

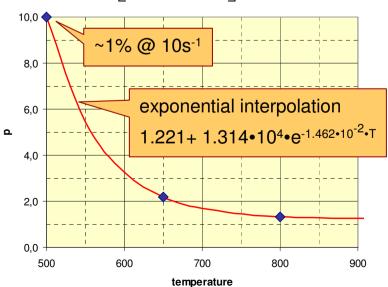


- Choose one value for *C* and one for *p*
- Rate effects are important in the onset of local necking
- Choose \boldsymbol{C} and \boldsymbol{p} for the higher plastic strains (>0.2)

What if we havenot enough data (Numisheet Benchmark)?

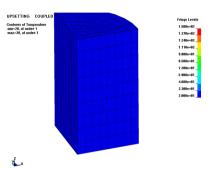

yield cuves provided by Numisheet BM03




base line for table definition in MAT_106

set C to a constant number \Rightarrow C = 10

Find **p** to match curves for 1.0s⁻¹



Thermal Coupling Effects

Do we need to account for plastic work to heat conversion?

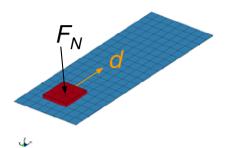
$$w_{pl} = \rho c_p \Delta T = \eta \int_{\varepsilon_{eq}} \sigma_{eq} d\varepsilon_{eq}$$

- can cause trouble if strain localization starts
- localization results in high local strain rates
- Cowper-Symonds scales up stress and thus plastic work
- high local temperature rates

thermal solver reduces time step

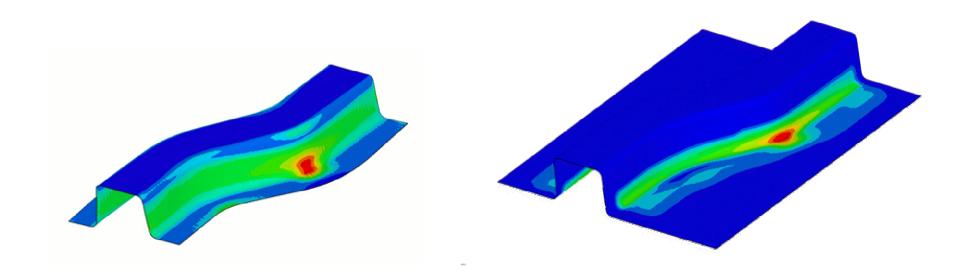
blank temperature can climb above initial value

- we won't loose accuracy if we neglect this effect
- ⇒ simulation is more robust without work to heat conversion


Thermal Coupling Effects

Is it necessary to include friction heat?

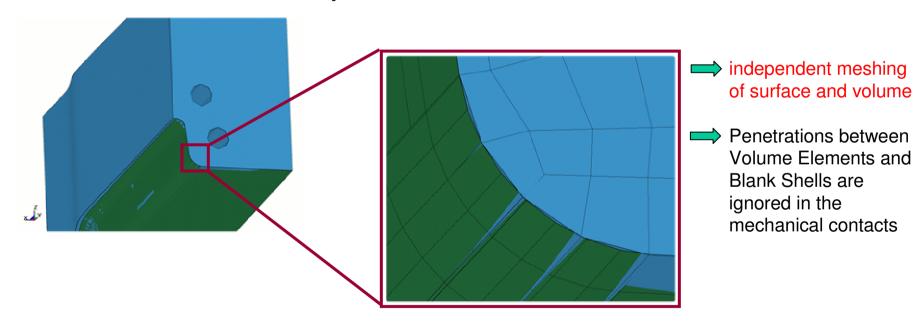
- friction coefficient is very high (0.3 ...0.4)
- seems reasonable to include it



- very high local contact forces due to mass and speed scaling
- simple coulomb law predicts high friction energy
- can cause local temperature peaks in contact surface
- temperature fringes do not look reasonable
 - in real life friction force is limited by blank yield stress
 - more reliable without friction energy conversion

Thermal Coupling Effects

Application of coupling effects in cold stamping of high strength steel

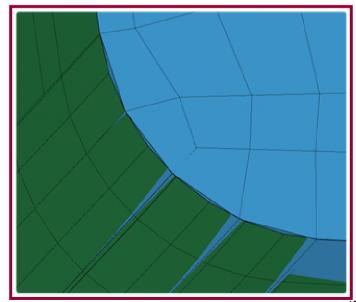

work to heat in blank

friction to heat in die

Use of thermal contact to enhance our modelling skills

- Die Surface Geometry accurately modeled with Shell Elements
- Die Volume Geometry modeled with Volume Elements Alignment of meshes?
- Shell and Volume Mesh coupled with contact definition

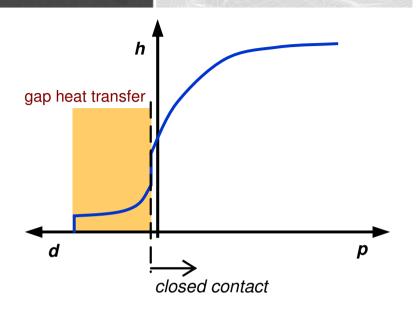
- heat transfer from blank to die surface shell by thermal contact
- heat dissipation into the dies by thermal contact between shell and volume mesh



Use of thermal contact to enhance our modelling skills

*CC	NTACT_TIED	_SURFACE_	O_SURFACE	_OFFSET_TH	ERMAL_ID			
\$	CID	CONTACT	INTERFACE	TITLE				
	6Pun	ch 2-21						
\$	SSID	MSID	SSTYP	MSTYP	SBOXID	MBOXID	SPR	MPR
	2	21	3	3			1	1
\$	FS	FD	DC	V	VDC	PENCHK	BT	DT
\$	SFS	SFM	SST	MST	SFST	SFMT	FSF	VSF
\$	K	HRAD	HCONT	LMIN	LMAX	CHLM	BC_FLAG	1_WAY
		& H.7	ΓOOL	5.000	5.000			

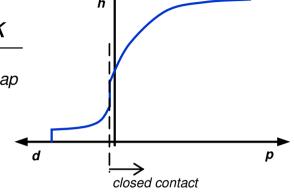
Set HTOOL to a very high number to get a thermal equivalent to tied contact


HTOOL ~ 50.000 W/m²K

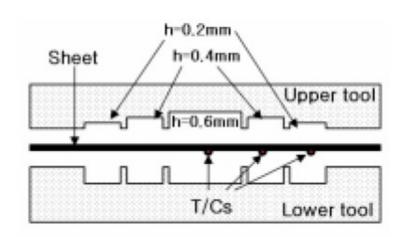
How to model gap heat transfer?

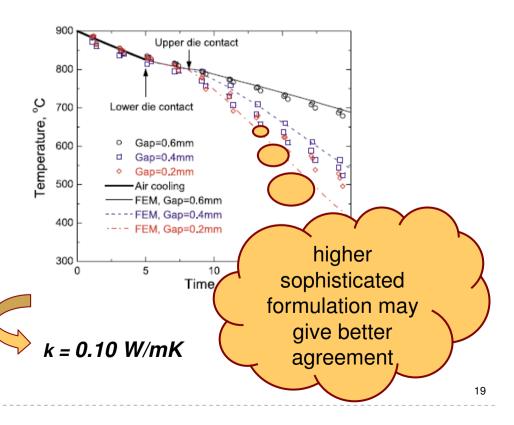
$$h_{gap} = \frac{k}{L_{gap}} + f_{rad} (T + T_{\infty}) (T^2 + T_{\infty}^2)$$
very sensitive to small gaps
Kelvin scale necessary

⇒ do not use radiation term with °C scale



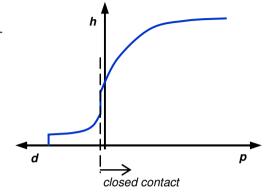
How to model gap heat transfer?


POSCO TECHNICAL REPORT 2006(VOL. 10 No. 1)


$$h_{gap} = \frac{k}{L_{gap}}$$

DEVELOPMENT OF THERMAL-MECHANICAL COUPLED SIMULATION SKILLS FOR HOT PRESS FORMING TOOL DESIGN

H. G. Kim*, H. S. Son and S. H. Park



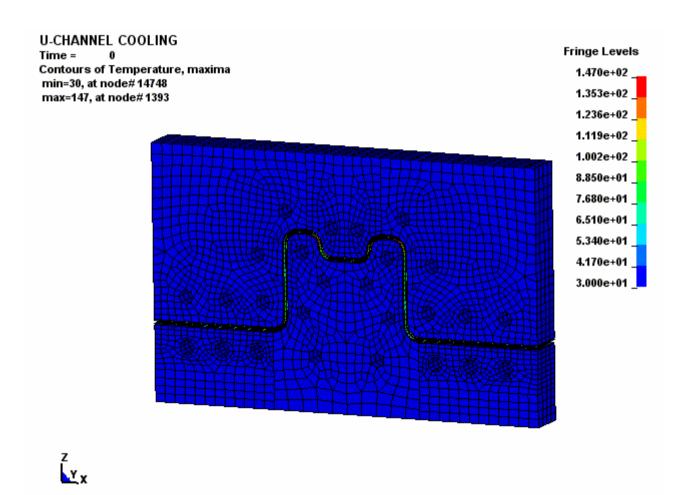
How accurate is gap heat transfer?

$$h_{gap} = \frac{k}{L_{gap}}$$

European standard EN 10143

Table 4: Thickness tolerances: EN 10143 : 2006: R_{p0.2}≥360N/mm² and ≤420N/mm²

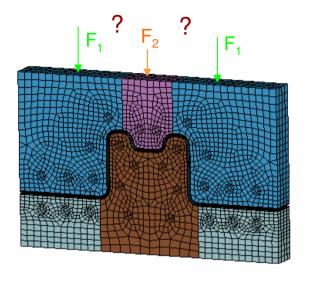
Nominal thickness			Normal tolerances for a nominal width of			Special tolerances (S) for a nominal width of		
		≤1200	>1200	>1500	≤1200	>1200	>1500	
			≤1500			≤1500		
>	≤	±	±	±	±	±	±	
0.35	0.40	0.05	0.06	0.07	0.040	0.045	0.050	
0.40	0.60	0.06	0.07	0.08	0.045	0.050	0.060	
0.60	0.80	0.07	0.08	0.09	0.050	0.060	0.070	
0.80	1.00	0.08	0.09	0.11	0.060	0.070	0.080	
1.00	1.20	0.10	0.11	0.12	0.070	0.080	0.090	
1.20	1.60	0.13	0.14	0.16	0.080	0.000	0.110	
1.60	2.00	0.16	0.17	0.19	0.090	0.110	0.120	
2.00	2.50	0.18	0.20	0.21	0.120	0.130	0.140	
2.50	3.00	0.22	0.22	0.23	0.140	0.150	0.160	

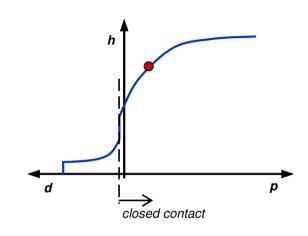

nominal thickness of Numisheet BM3 1.95 mm

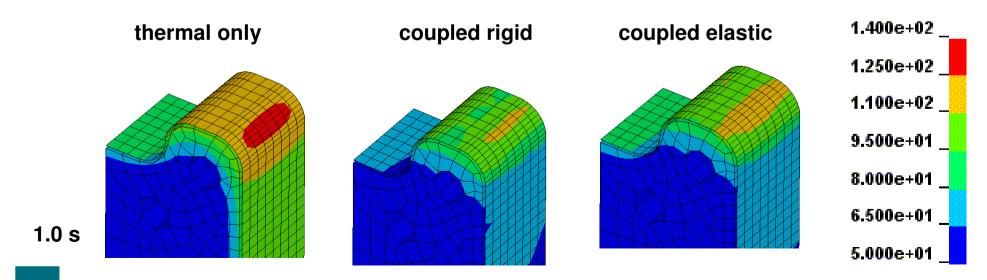
USIBOR as delifered $R_{p0.2} = 350...550 \text{ MPa}$

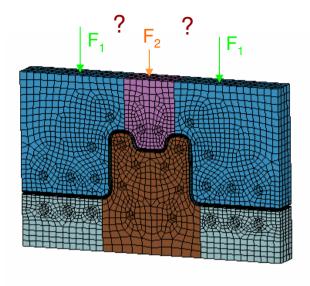
- uncertainty in nominal thickness has strong impact
- higher sophisticated formulations overstate second order effect of gap heat transfer

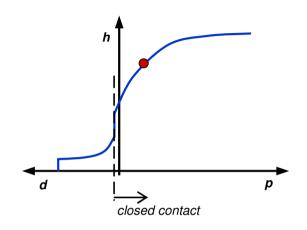
Cooling Simulation Solution Methods

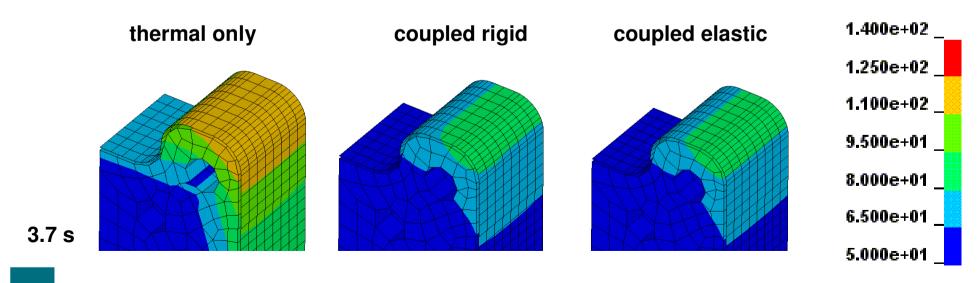





Cooling Simulation Solution Methods




? elastic or rigid dies ?


Cooling Simulation Solution Methods

? Elastic or rigid dies ?

Dynamore GmbH

Industriestraße 2 70565 Stuttgart http://www.dynamore.de

David Lorenz david.lorenz@dynamore.de