



# MAPPING AND DATA MANAGEMENT ALONG THE SIMULATION PROCESS CHAIN WITH THE MAPPING TOOL ENVYO®

C. Liebold<sup>1</sup>



<sup>1</sup>DYNAmore GmbH Industriestraße 2 70565 Stuttgart

cl@dynamore.de

13.03.2017

Information Day ENVYO & COMPOSITE SIMULATION

Stuttgart, Germany



#### AGENDA

- "Historical" Overview
- Workflow
- Mapping Capabilities
- Example
- Future Plans
- Questions & Answers

# "Historical" Overview

- In 2011, with the start of the government funded research project T-Pult, first implementations were made to enhance the existing tool DYNAmat with mapping capabilities for BEAM -> SHELL mapping as well as to consider CT-scan data.
- Further enhancements led to the consideration of fiber orientations gained from draping simulations with \*MAT\_249 (\*MAT\_REINFORCED\_THERMOPPLASTIC) on shell meshes with the ORIENTATION -> SHELL mapping capability.
- Several material models for draping simulations (\*MAT\_034, \*MAT\_234 & \*MAT\_235) were considered for orientation mapping within the government funded research project SWIM-RTM.
- In 2013, the mapping capabilities were removed from the Fortran based DYNAmat – tool and transferred to an independent C++ program.



## "Historical" Overview

- Several names existed "Fibermap" and "DYNAmap" were the most common ones.
- With the start of the government funded research project ARNEA2036 in 2014, further software tools such as PAM-Crash, PAM-RTM, FiberSim can be considered within the mapping.
- A link to the HDF5 binary data storage format has been implemented.
- In 2015, a lot of work went into the consideration of fiber orientations as well as resinous areas which can be identified with multi-layer draping simulations.
- Enhancements were made towards the homogenization of stiffness parameters for \*MAT\_157 for short fiber reinforced composites.

### "Historical" Overview

- In 2016, the consideration of eff. plastic strain resulting from a forming simulation for damage estimation in the GISSMO -\*MAT\_ADD\_EROSION failure and damage model has been implemented.
- Results from forming simulations using shell meshes can be used to generate solid meshes for springback analysis and thickness postprocessing.
- A tool to generate vector files for the post-processing of various spring back analysis as been implemented.
- The mapping tool is officially named ENVYO<sup>®</sup> is introduced to the public at the 14<sup>th</sup> German LS-DYNA User's Meeting in Bamberg, Germany.



# Workflow





- ORIENTATION -> SHELL
- ORIENTATION -> ALE\_MESH
- SHELL -> STACKED\_SHELL
- SOLID -> SOLID
- STACKED\_SHELL -> SOLID
- BEAM -> ALE\_MESH
- SHELL -> SOLID
- SHELL -> THICK\_SHELL
- STACKED\_SHELL -> STACKED\_THICK\_SHELL
- SHELL -> SHELL
- SHELL -> SOLID (GENERATION)
- MOLDFLOW -> SHELL

- MOLDFLOW -> SOLID
- MOLDFLOW -> SHELL (with plasticity curve interpolation)
- Moldflow visualization
- CT-Scan -> SHELL
- CT-Scan Visualization
- CT-Scan -> Through Thickness Curves
- MOLDFLOW -> Through Thickness Curves
- MOLDFLOW3D -> Through Thickness Curves
- HDF5-Input
- Springback Analysis





ORIENTATION -> ALE\_MESH



#### SHELL -> STACKED\_SHELL



7

- SHELL -> STACKED\_SHELL
- Thickness mapping





PAM-RTM for infiltration

SHELL -> STACKED\_SHELL







STACKED\_SHELL -> SOLID





BEAM -> SHELL

Source - Mesh:



#### Scale factor = 5.0:



#### Scale factor = 1.0:







BEAM -> SHELL











BEAM -> ALE\_MESH





#### SHELL -> SOLID



original:

target:



#### Fiber orientation output:











SHELL -> THICK\_SHELL



STACKED\_SHELL -> STACKED\_THICK\_SHELL





STACKED\_SHELL -> STACKED\_THICK\_SHELL









SHELL -> SHELL





- SHELL -> SHELL
  - Shell thickness from Autoform result (left) and after the mapping process (right).



 Effective plastic strain from Autoform result (left) and after the mapping process (right).





- SHELL -> SHELL
  - History-Variable 6 (Damage)

**History-Variable 9 (Triaxiality)** 

History-Variable 19 (damage ,`til failure strain) 

 $\sim$ 

Fringe Levels Fringe Levels 7.041=60 6.806e-01 6.572+01 6.377+01 6.377+01 6.374-01 5.455+02 6.358+01 5.455+02 4.252+02 4.252+02 3.7550+01 3.2560+01 3.2560+01 3.2560+01 3.2560+01 3.2560+01 3.2560+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.8760+01 1.

Pringe Levels 6.359=01 6.325=01 5.225=02 5.4091=04 4.774=01 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03 4.4574=03
4.4574=03 4.4574=03
4.4574=03 4.4574=03
4.4574=03 4.4574=03
4.4574=03 4.4574=03
4.4574=03 4.4574=03
4.4574=03 4.4574=03
4.4574=03 4.4574=03
4.4574=03
4.4574=03 4.4574=03
4.4574=03
4.4574=03
4.4574=03
4.4574=03
4.4574=03

Fringe Levels 8.391e-03 8.311e-03 7.532e-01 7.532e-01 7.532e-01 6.713e-01 6.713e-01 6.731e-01 6.731e-01 6.735e-01 7.532e-01 7.552e-01 7.552e-01 7.552e-01 7.552e-01 7.552e-01 7.552e-01 7.552e-



24

SOLID -> SHELL 

Contours of plastic strain min=-0.0074038, at elem# 32108 max=0.463726, at elem# 35078







#### v. Mises stress:





4.637e-01 4.480e-01

4.323e-01

4.166e-01

4.009e-01 3.852e-01

3.695e-01 3.538e-01

3.381e-01 3.224e-01 3.067e-01

2.910e-01

2.753e-01

2.596e-01 2.439e-01

2.282e-01 2.125e-01

1.968e-01 1.810e-01 1.653e-01

1.496e-01 1.339e-01

8.682e-02

7.112e-02 5.541e-02

2.400e-02

SHELL -> SOLID (GENERATION)





MOLDFLOW -> SHELL





- MOLDFLOW -> SHELL (with plasticity curve interpolation)
  - Mapping (Moldflow/Moldex -> Shell) and homogenization for SFRP – components







 Usage of elastic-viscoplastic material model \*MAT\_157 + \*Initial\_Stress\_Shell (NHISV = 2a<sub>0</sub> + 21a<sub>1</sub> + 3a<sub>2</sub> + a<sub>3</sub>)





| Flag                  | Description           | Variables                                     | #  |
|-----------------------|-----------------------|-----------------------------------------------|----|
| <i>a</i> <sub>0</sub> | Material directions   | <i>q</i> <sub>1</sub> , <i>q</i> <sub>2</sub> | 2  |
| $a_1$                 | Anisotropic stiffness | Cij                                           | 21 |
| $a_2$                 | Anisotropic constants | $r_{00}, r_{45}, r_{90}$                      | 3  |
| $a_3$                 | Stress-strain Curve   | LCSS                                          | 1  |



MOLDFLOW -> SHELL (with plasticity curve interpolation)

 $a_2q_2$ 

 $a_1q_1$ 

Orientation tensor 2<sup>nd</sup> order a: Mapped from process simulation as

- eigenvectors  $q_i$  (main fiber directions)
- eigenvalues a<sub>i</sub> (orientation probability)





Moldflow visualization









CT-Scan -> SHELL







CT-Scan Visualization



- CT-Scan -> Through Thickness Curves
- Fiber orientation of 0°- specimen over thickness:



MOLDFLOW -> Through Thickness Curves



#### HDF5-Input

- A platform independent, HDF5 data storage container is defined within the ARENA2036 project, allowing to access and track simulation results from other partners within a defined project.
- This is available for different FE solvers an will be extended as needed

| and the second se | HDFView 2                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| <u>F</u> ile <u>W</u> indow <u>T</u> ools <u>H</u> elp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
| Recent Files /home/cl/Projekte/FuE_ARENA2036/00_Process_Chain_HDF5/00_new.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |
| S Projekt_Tunnelbruecke.h5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | status_overview at /000_ProcessStatus/ [Projekt_Tunnelbruecke.h5 in |
| 🜪 📹 000_ProcessStatus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Table Ital                                                          |
| status_overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
| 🗢 🛍 010_PreliminaryDesign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |
| 🗢 🛍 020_Optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| 🗢 🛍 030_ProcessSimulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Description<br>0 PRE1 Draping EiberSim 20150907 122153              |
| e 📹 040_Mapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 OPT1_Layup_Nastran_20150907_122159                                |
| ► 🎒 MAP1_Map2RTM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 PR01_Braiding_esi-pc_20150907_122204                              |
| 🕈 🚍 MAP2_Map2Structural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 MAP2_Map2Structural_esi-pc_lsdynal_20150907_122213                |
| esi-pc_lsdyna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     |
| 20150907_122213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
| OOO_SOURCE: Generisches_Bauteil_Flechtsim_V3_RESULT_1.pc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |
| ∽ □ 001_TARGET: Target-Flechtkern.k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |
| CONTRACT Orientations mapped from SHELL key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |
| • • 999-ManningCommand: manning info Man2Structural in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |

Springback Analysis





- Geometry matching
  - A "Closest Point" search is implemented, but averaging techniques shall be realized soon.



Two geometry matching algorithms are implemented for automatic transformations





# Example



#### Example

\$#-----**Target – Properties** \$#-----NumberOfTARLayers=5 NumberOfTARInPlanelPs=4 MapStress=YES TargetThickness=2.5 MapMainDir=NO \$#-----**\$# Mapping-Options** \$#-----ALGORITHM=ClosestPoint SORT=BUCKET TargetMaterialModel=157 HomogenizationMethod=Mori-Tanaka ClosureApproximation=hybrid E11F= E22F= **RHOF= PRBAF=** PRCBF=

G12F= EM= RHOM= PRM= AspectRatio= FiberVolumeFraction= InclusionShape=Spheroidal

# Example

| \$#                             | StrainRate#4Direction#3=90998 |
|---------------------------------|-------------------------------|
| \$# Define Curve Input          | \$#                           |
| \$#                             | \$# END-OF-FILE               |
| NumberOfCurveFiles=3            | \$#                           |
| CurveFileName#1=0deg_curves.inc |                               |
|                                 |                               |
| \$#                             |                               |
| \$# Strain Rate Info            |                               |
| \$#                             |                               |
| NumberOfDirections=3            |                               |
| Direction#1=0                   |                               |
|                                 |                               |
| NumberOfStrainRates=4           |                               |
| StrainRate#1=                   |                               |
|                                 |                               |
| StrainRate#1Direction#1=995     |                               |
|                                 |                               |
| StrainRate#1Direction#2=45995   |                               |
|                                 |                               |
| StrainRate#1Direction#3=90995   |                               |
|                                 |                               |
|                                 |                               |

• Link to optimization:



. . .

- GUI implementation
- A return mapping has to be performed in order to quantify and "postprocess" the loss of information during the mapping process (by now, only visual quality check).
- Possible evaluation criteria:
  - Overlap of mapped areas
  - Average offset btw. meshes
  - Comparison btw. element normals
  - "jumps" within the mapped parameter
  - Difference btw. transferred energies
  - Offsets btw. corresponding elements
- Output can be local (element or nodewise) or global



#### Tensor interpolation methods:

- Several approaches exist:
  - Euclidean interpolation
  - Riemannian interpolation
  - Log-Euclidean method
  - Geodesic-loxodrome approach
  - Approaches using partial differential equations
- Target: properly transfer shape and orientation
- Tensor characteristics are described by eigenvalues, eigenvectors
- The usage of tensor invariants is proposed for tensor interpolation



- Scalar value interpolation methods:
  - Several approaches exist:
    - Inverse distance weighted methods (Shepard's method)
    - Rectangle based blending methods
    - Triangle based blending methods
    - Finite element based methods
    - Foley's methods
    - Global basis function type methods
    - Modified maud methods



- Envyo<sup>®</sup> will be available on Windows and Linux platforms
- first test versions will be available by the end of this year
- after a successful testing period it is thought to distribute Envyo<sup>®</sup> commercially. Details will follow in due time.

Remark:

The quality and the capability of the program are highly dependent on its usage. Feedback is very appreciated.

#### **Questions & Answers**





C. Liebold<sup>1</sup>

<sup>1</sup>DYNAmore GmbH Industriestraße 2 70565 Stuttgart

cl@dynamore.de



