

DynaWeld GmbH & Co. KG Süd: Herdweg 13, D-75045 Wössingen Nord: Hermann-Löns-Straße 3A, D-21382 Brietlingen E-Post: info@dynaweld.de Web: www.dynaweld.eu

DynaWeld

Preprocessor für Schweißen und Wärmebehandlung mit LS-Dyna

Zubehörverwaltung

Preprocessor

DynaWeld Preprocessor für Schweißen und Wärmebehandlung

🙆 😔 DynaWeld - www.dynaweld.eu -- 2017 * 07.03.2017 ... Arbeitsverzeichnis: /fp01 ✓ Aluminium Stahl Werkstoff SimWeld Trajektorien LS-DYNA Input Hilfsmittel Trajektorien Check Materialdaten SimWeld Prozessplan Datei Manager LS-PrePost Vernetzer Modell Check Sprache Ende

Analyse-Controller

Barrish and a state of the second	Participa -
Berechnungsoptionen:	Projekt:
Restart Methode (D3DUMP)	Projekt-Input loeschen
Restart Methode (DYNAIN)	Projekt-Ergebnisse loeschen (05-result)
Elektro-Magnetische Analyse	Post-Verzeichnis loeschen (07-post)
Entkoppelte Analyse	LS-DYNA Input generieren:
Modelloptionen:	Vollstaendiger Input in einer Datei
Knotensets Trajektorien sortieren	Vollstaendiger Input strukturiert
	Waermequellen
	Zeitsteuerung
	Randbedingung
4	Part und Oberflaechen
4	Kontakt
	Elektro-Magnetisch
	Elektro-Magnetisch Allgemeine Parameter
Analyse:	Allgemeine Parameter Kontrolle - LOG-Dateien anzeigen:
Analyse: Nur Temperaturfeldberechnung	Allgemeine Parameter Kontrolle - LOG-Dateien anzeigen: Waerme.LOG-Datei anzeigen
	Allgemeine Parameter Kontrolle - LOG-Dateien anzeigen: Waerme.LOG-Datei anzeigen Zeit.LOG-Datei anzeigen
Nur Temperaturfeldberechnung	Allgemeine Parameter Kontrolle - LOG-Dateien anzeigen: Waerme.LOG-Datei anzeigen Zeit.LOG-Datei anzeigen Boundary.LOG-Datei anzeigen
Nur Temperaturfeldberechnung Nur Mechanische Berechnung	Allgemeine Parameter Kontrolle - LOG-Dateien anzeigen: Waerme.LOG-Datei anzeigen Zeit.LOG-Datei anzeigen Boundary.LOG-Datei anzeigen Part.LOG-Datei anzeigen

STATUS:

Preprocessor Überblick

Allgemeine Funktionen von DynaWeld

- Schalen- und Volumenelemente, Hybrid-Modelle, 2D-Modelle
- Spannwerkzeuge zeitgesteuert, bewegt oder statisch
- Adaptive ("echte") mechanisch und thermische lokale Verbindung verschweißter Bauteile
- Zusammenbau-Simulation von Bauteilen und Gruppen
- Prozessketten-fähig durch 1-Code-Strategie
- Im Karosseriebau können vorhandene Modelle für die Crashberechnung oder NVH verwendet werden
- Keine kompatible Vernetzung erforderlich

Schweißverfahren

- Sämtliche gängigen Schweißverfahren (MSG, WIG, MIG, MAG, Laser, Laser-Remote, Lichtbogen ...)
- Widerstandspunktschweißen, elektro-thermisch mechanisch gekoppelt
- Mehrlagennähte
- Auftragschweißen
- Löten
- Beliebige Kombinationen davon

Wärmequellen

- Diverse verschiedene Wärmequellfunktionen ermöglichen jedes gängige Schweißverfahren
- Offset- Funktion normal und transversal
- Rein thermische Berechnung für Wärmequellen-Kalibrierung oder entkoppelte Analyse möglich

Werkstoffe

- Import von Werkstoffdaten über Schnittstellen zu JmatPro, Sysweld, Weldware
- Werkstoffdaten, einphasig/ mehrphasig
- Einlesen eigener ZTU-Diagramme und Werkstoffdaten
- Anpassen/ Kalibrieren vorhandener Datensätze z.B. auf andere Streckgrenzen, Zugfestigkeiten

Clusterfähigkeit/ Parellelisierung

- Über den LS-Dyna MPP Solver parallelisierte Rechnung auf vielen Kernen (HPC)
- Implizite und explizite Berechnungen

DynaWeld ist auf die Verwaltung "großer" Berechnungsmodelle mit einer Vielzahl von Schweißnähten ausgelegt.

Daher erfolgt die Eingabe des Schweißplans sowie der zugeordneten Daten für den Wärmeeintrag über Tabellen, die in Ecxel oder vergleichbaren Produkten verwaltet werden. Gleiches gilt für zeitgesteuerte Werkzeuge, sonstige Randbedingungen, Kontakte sowie alle sonstigen Prozessrelevanten Daten. Die Einbindung in DynaWeld erfolgt in einer Meta-Sprache über csv-Dateien.

Damit ist nicht nur die Verwaltung vieler Nähte schneller, sondern eine Skript-basierte automatisierte Ansteuerung grundsätzlich in DynaWeld möglich und steht im Fokus der Weiterentwicklung.

Ziel dabei ist, die human-basierte, sich wiederholende, Dateneingabe in eine Vielzahl von Menüs und Untermenüs herkömmlicher GUI zu minimieren und auf die Eingabe reiner Prozessparameter zu beschränken.

DynaWeld wird in seinen künftigen Versionen den Schritt in die Digitalisierung der CAE-Welt gehen und die Tür öffnen für einen besonders effizienten Einsatz in der Industrie.

Durch die Struktur von DynaWeld können, je nach spezifischer Kundenanforderung, prinzipiell sogar alle für die Simulation erforderlichen Daten automatisch zusammen gesammelt werden und zu einem Berechnungsmodell vereint werden.

- Automatisierung abgeleiteter Varianten
- Automatische Aktualisierung von Entwicklungsständen
- Automatisierung wiederkehrender (ähnlicher) Berechnungsaufgaben
- Automatisierung der Prozesskette

Bedienungskonzept

DynaWeld Prozessplan:

Zeitliche Abfolge der Schweißnähte, Wärmeeinträge und Quelleinstellungen

) ynaWeld -	Process pla	an	Save Tab	le	Save All	29.04.16		
								TRLK TRLZ
								MO MOP
Process nr.	Weld ID	Length	v	Duration	Start	End	PAUSE	Q
		mm	mm/s	s	s	s	s	w
0	1	2	3	4	5	6	7	8
•					•		•	•
1	1001	0,005	0.01	0,5000	0,5000	1,0000	1,0000	3000
2	1002	0,005	0.01	0,500	2,0000	2,5000	2,5000	3000
3	1003	0,005	0,01	0,500	5,0000	5,5000	1,5000	3000
4	1004	0,005	0,01	0,500	7,0000	7,5000	1,5000	3000
5	1005	0,005	0,01	0,500	9,0000	9,5000	2,5000	3000
6	1006	0,005	0.01	0,500	12,0000	12,5000	0,5000	3000
7	1007	0,005	0,01	0,500	13,0000	13,5000	3,5000	3000
8	1008	0,005	0,01	0,500	17,0000	17,5000	4,5000	2800
9	1009	0,005	0,01	0,500	22,0000	22,5000	1,5000	3000
10	1010	0,005	0,01	0,500	24,0000	24,5000	0,5000	3000
11	1011	0,005	0.01	0,500	25,0000	25,5000	1,5000	3000
12	1012	0,005	0,01	0,500	27,0000	27,5000	1,5000	3000
13	1013	0,005	0,01	0,500	29,0000	29,5000	1,5000	3000
14	1014	0,005	0,01	0,500	31,0000	31,5000	1,5000	3000
15	1015	0,005	0.01	0,500	33,0000	33,5000	2,5000	3000
16	1016	0,005	0,01	0,500	36,0000	36,5000	1,5000	3000
17	1017	0,005	0,01	0,500	38,0000	38,5000	1,5000	3000
18	1018	0,005	0,01	0,500	40,0000	40,5000	1,5000	2800
19	1019	0,005	0.01	0,500	42,0000	42,5000	2,5000	2800
20	1020	0,005	0,01	0,500	45,0000	45,5000	1,5000	2800
21	1021	0,005	0,01	0,500	47,0000	47,5000	3,5000	2800
22	1022	0,005	0,01	0,500	51,0000	51,5000	1,5000	3000
23	1023	0,005	0.01	0,500	53,0000	53,5000	1,5000	3000
24	1024	0,005	0,01	0,500	55,0000	55,5000	2,5000	3000
25	1025	0,005	0,01	0,500	58,0000	58,5000	2,5000	3000

Bedienungskonzept

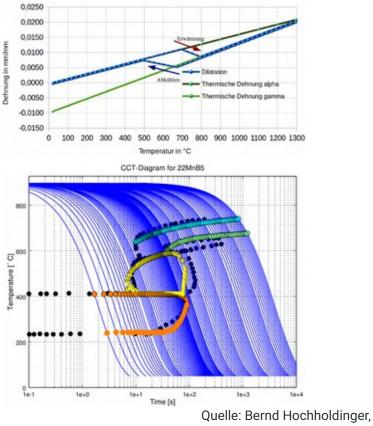
DynaWeld Prozess Lasten:	olan -Randbedingungen u	nd							F,u					
	DynaWeld – Boundary Condition on Nodes or Nodesets (SPC)	S	ave Table		Sa	ve All							\neg	
		-		- T-			-						· · · · · ·	
Zeitsteuerung												_		t
			SYM	CID	xo	YO	ZO	XL	YL	ZL	XP	YP	ZP	
Kraft / Weg-Steuerung	Name	ID	Node/Set	CID	UX / FX	UY / FY	UZ / FZ	RX / MX	RY / MY	RZ / MZ	Birth	Death	LOAD	t-Ramp
radit, meg etederang		•			•		•	•	•		5	5	N / Nm / mm / rad	5
	0	1	2	3	4	5	6	7	8	9	10	11	12	13
		•	•	•	•	•	•	•		•	•	•	•	•
	Positionierbolzen mit Schulter	304	S	304			x					2000		
	Positionierbolzen mit Schulter	305	S	305			x			-	-	2000		
	Positionierbolzen mit Schulter	306	S	306			x	-	-	-	-	2000		
 Symmetrie 	Positionierbolzen mit Schulter	307	S	307			x				-	2000		
	Positionierbolzen mit Schulter	310	S	310			×					2000		
 Randbedingung 	Elektrode-oben	501	DSX	501			x		-		0,50	1,50	-0,75	0.50
• Ranubeungung	Elektrode-unten	601	DSX	501			x				0,50	1,50	0,75	0.50
	Elektrode-oben	502	DSX	502			x				2,00	3,00	-0,75	0,50
	Elektrode-unten	602	DSX	502			x				2,00	3,00	0,75	0,50
 Bewegung 	Elektrode-oben	503	DSX	503			x				5,00	6,00	-0,75	0,50
	Elektrode-unten	603	DSX	503			x				5,00	6,00	0,75	0,50
	Elektrode-oben	504	DSX	504			x				7,00	8,00	-0,75	0,50
 Einzelkraft 	Elektrode-unten	604	DSX	504			x				7,00	8,00	0,75	0,50
	Elektrode-oben	505	DSX	505			х				9,00	10,00	-0,75	0,50
	Elektrode-unten	605	DSX	505			x				9,00	10,00	0,75	0,50
	Elektrode-oben	506	DSX	506	-		x			-		13,00	-0,75	0,50
Druck	Elektrode-unten	606	DSX	506	-		X					13,00	0,75	0,50
Braok	Elektrode-oben	507	DSX	507			x					14,00	-0,75	0,50
	Elektrode-unten	607	DSX	507			x		-	-		14,00	0,75	0,50
Tomporatur	Elektrode-oben	508	DSX	508			x					18,00	-0,75	0,50
 Temperatur 	Elektrode-unten	608	DSX	508			X			-		18,00	0,75	0,50
•	Elektrode-oben	509 609	DSX DSX	509 509			X		-			23,00	-0,75	0,50
	Elektrode-unten	510	DSX	510			X		-			23,00	-0,75	0,50
 Spannung 	Elektrode-oben Elektrode-unten	610	DSX	510		-	x		-	-		25,00	0,75	0,50
opannang	Elektrode-oben	511	DSX	511	-		×		-			26,00	-0.75	0,50
	Elektrode-oben	611	DSX	511			x		-	-		26,00	0,75	0,50
Ctropotörko	Elektrode-oben	512	DSX	512			x					28,00	-0,75	0,50
 Stromstärke 	Elektrode-unten	612	DSX	512			x					28,00	0,75	0,50

Preprocessor Zusatzfunktionen

Zusatzfunktionen

- Duplizierfunktion für Varianten
- Kurven-Darstellung des Ist- Wärmeeintrags über die Zeit im Berechnungsmodell
- Allgemeine Kurven-Darstellung von Ergebnisgrössen über die Zeit
- Performance-Analyse
- Automatisches Umkehren der Schweißrichtungen
- Automatisierte Auswertungen

	Modell:
	Modell dublizieren / (neue Variante)
	Leerzeilen in 00-source/NETZ*, MESH* loeschen
	Konvertiere 00-source/*.inp in 00-source/MESH*.dyn
	Keyword auswerten 00-source/SOURCE*.*
	Keyworddateien reduzieren in 00-source
	Auswertung:
	Waermeeintrag auswerten (*.tprint Datei)
	Waermeeintrag in Tabellenkalkulation anzeigen
	Oeffne DynaWeld-Heat-Check
	Erzeuge *.cfile fuer History-Auswertung
	Erzeuge *.cfile fuer Pfad-Auswertung
	Performance Analyse
	EM Auswertung
	Berechne Kreismittelpunkt
2 B	Konverter:
	gl - Extrahiere letztes Datenpaar fuer alle GUT*.dat
	> , fuer alle 07-post/*.dat
	> , fuer alle *.csv, Feldtrenner ,> ;
-	, -> . fuer alle *.csv. Feldtrenner : -> ,
	Ergebnisanzeige:
	Temperatur Ergebnisse Skala fuer Stahl (Kelvin)
	Temperatur Ergebnisse Skala fuer Alu (Kelvin)
	Mechanische Ergebnisse Skala fuer Stahl (Kelvin)
	Mechanische Ergebnisse Skala fuer Alu (Kelvin)
	Kontaktflaechen Ergebnisse
	Benutzerdefiniertes Skript (07-post/user.cfile)
	Sonstiges:
	DynaWeld Umgebungsvariable anzeigen



Werkstoffe und Modelle

Material-Modelle

- Vereinfachtes Ein-Phasen-Modell Mat 270
 - berücksichigt auch Umwandlungsdehnungen

- Mehrphasen-Modell Mat 254
 - Phasen-kinetische Modelle:
 - Koinstinen-Marburger
 - Johnson Mehl Avrami Kolmogorov
 - Leblond

DYNAmore Swiss

Werkstoffe und Modelle

Materialdaten

Schnittstellen

Import:

Arbeitsverzeichnis: /fp01

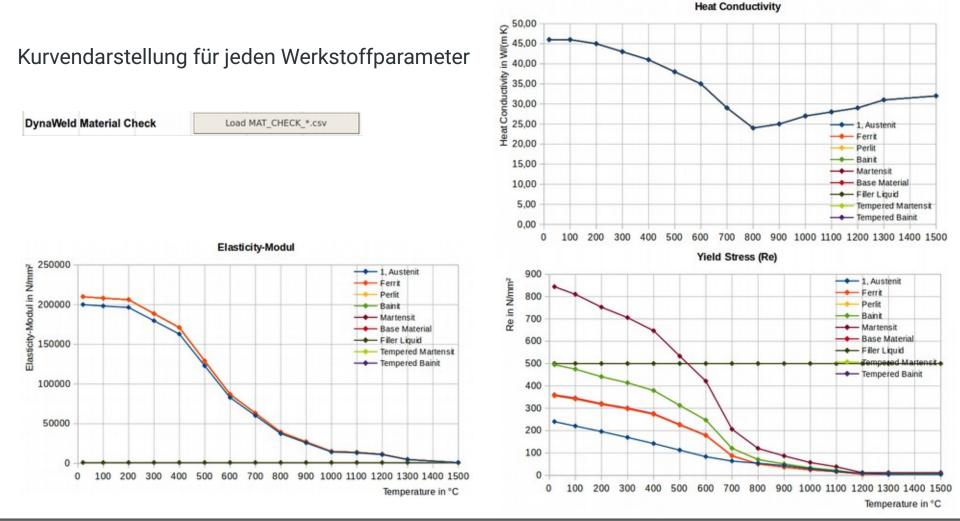
	Ein-p	hasig			
Modet	off Namou I	NICROFER-P	raha Dr	abt 003 13	Coharma

Werkstoff ID (1 .. 999): 1 Solidus Temperatur (Aktivierung Start): 1400 Liquidus Temperatur (Aktivierung Ende): 1500 History Reset Starttemperatur (TASTART): 1250 History Reset Endtemperatur (TAEND): 1300 Mindest E-Modul (MPa): 10000

Check und Ende

	C ohne Datenimport	1300					
	Anwender ZTU (13-ZTU.csv)	Mindest E-Modul (MPa): 10000 Plastische Dehnung bei Zugfestigkeit: 0.13 Dehnrate: 0.0010					
	WeldWare Import (*.wwd)						
	JMatPro Import einphasig (*.jmt)						
	JMatPro / SysWeld Import (*.mat)						
Arts Arts	Werkstoffgruppe:						
	Stahl						
	Stahl - ohne Gefuegeumwandlung	v 0.01 □ 0.1					
= =	Aluminium						
/	Sonstige	1.0					
1 martin	Export:	□ 10.0 □ 100.0					
	*MAT_254 Mehrphasenmodell						
	*MAT_270 Einzelphasenmodell Nichtlinear						
	*MAT_270 Einzelphasenmodell Bilinar	Einstellungen fuer Schweissgut / Fluessig / Deaktiv E-Modul (MPa):					
	Dezimaltrenner csv-Datei> ,	1000					
	Ende	🗆 Schmelzen					

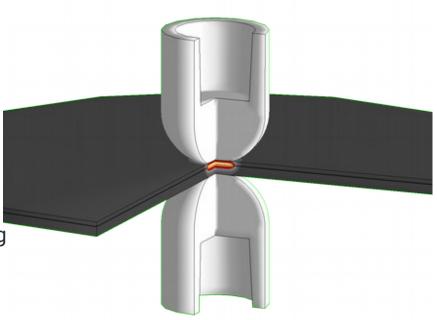
Mehr-phasig

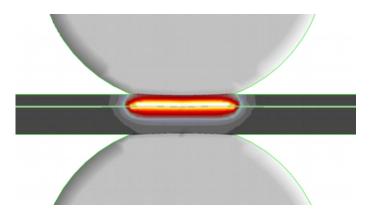

Werkstoff Name:		from_JMatF	Pro					
Werkstoff ID (1 999);	1						
Solidus Temperatur	(Aktivierung Start):	1400						
Liquidus Temperatur	(Aktivierung Ende):	1500						
Schmelzwärme (kl/kg		270						
	mperatur (TASTART):	1445.6904						
History Reset Endten		1495.6904						
Mindest E-Modul (MP		10000						
Plastische Dehnung b	ei Zuafestiakeit:	0.13						
Elektischen Wider	stand aus 11-MATERIA	L.csv importierer	1					
Einstellungen fuer Sc	hweissgut / Fluessig / I	Deaktiv						
Fliesskurve wie im	portiert							
Fliesskurve wie Au	ustenit							
V Konstante Streck	renze							
E-Modul (MPa):		1000						
C Schmelzen								
Grundworkstoff: 7usa	mmensetzung aus Pha	sepanteil						
Phase 1 Phase 2	Phase 3 Phase 4	Phase 5						
0.0 0.25	0.75 0.0	0.0						
0.0	10:15	0.0						
Phasenzuordnung:								
Ziel	Quelle	[
DynaWeld	JMatPro / Sysweld	Streckgrenze	Zugfestigkeit	Ergaenzen				
	P-1 P-2 P-3 P-4 P-5	MPa	MPa					
Austenit	F F F F P	182.0	555.48					
Ferrit		316.8	586.76					
Perlit		554.3	922.939999999					
Bainit		724.2	1138.2					
Martensit		842.0	1278.93					
Base Material		494.924999999	838.895	12				
Filler Liquid		1000	1100	17				
Tempered Martensit		724.2	1138.2					
Tempered Bainit		554.3	922.939999999	R				
Werkstoffgruppe:	nne Gefuegeumwandlu	ng Aluminium	Sonstige					
Ueberspringen Re	und Rm nach Ursprun	ngsphase aktualis	sieren Check	und Ende				

STATUS:

Werkstoffe und Modelle

Materialdaten

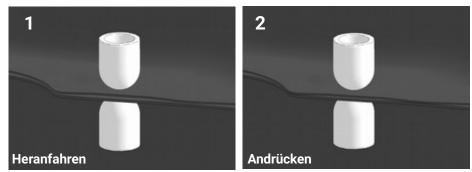


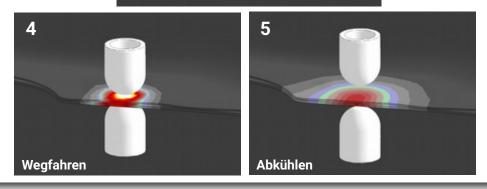


Widerstandspunktschweißen

Widerstandspunktschweißen

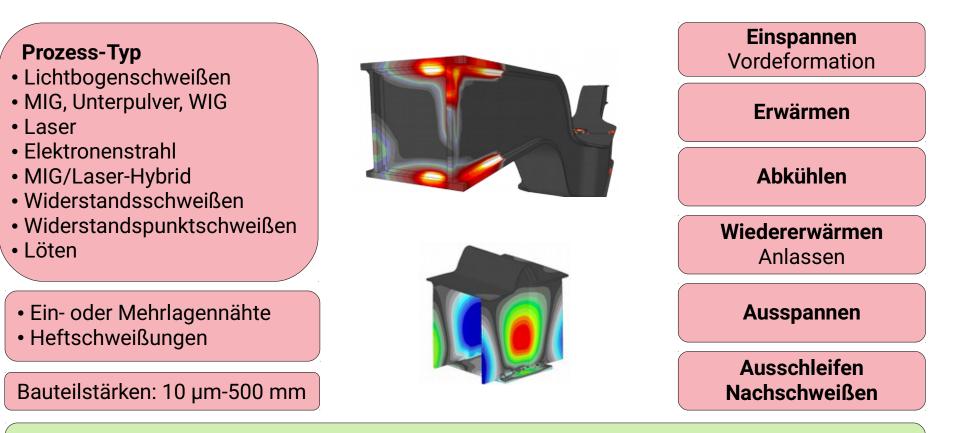
- Prozesssimulation -
- Methodik f
 ür die Prozess-Parameter-abh
 ängige Bewertung einzelner Schwei
 ßpunkte
- Größe und Ausbildung der Schweißlinse
- Vollständige elektro-thermisch mechanische Kopplung
- Kraft-Zeit-Steuerung der Elektroden
- Zeitsteuerung von Spannung/ Strom
- Elektrische und thermische Kontaktwiderstände druck- und temperaturabhängig
- Adaptive Bauteilverbindung innerhalb der Schweißlinse durch lokalen Schweißkontakt
- Kühlung der Elektroden




Widerstandspunktschweißen

Widerstandspunktschweißen

- Struktursimulation -
- Methodik f
 ür die strukturelle Verzugsbewertung vieler Schwei
 ßpunkte in Folge
- Einzelne Prozessphasen
- Wärmeeintrag über Ersatzquellen
- Volle thermisch mechanische Kopplung
- Weg-Zeit-Steuerung der Elektroden
- Adaptive Bauteilverbindung innerhalb der Schweißlinse durch lokalen Schweißkontakt
- Kühlung der Elektroden

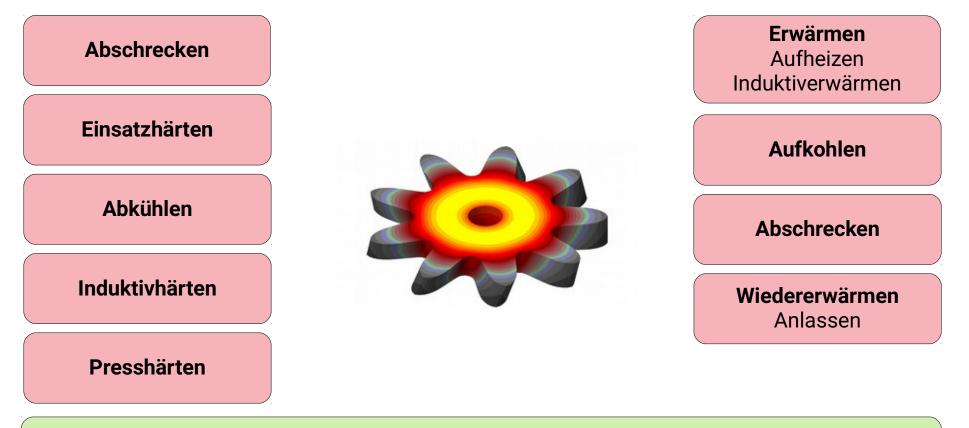


Überblick Schweißstruktursimulation

Schweißprozesse

Einzelschritte

Erzielbare Ergebnisse:


Verzüge, Eigenspannungen, lokale Werkstoffänderungen, Spannkonzepte

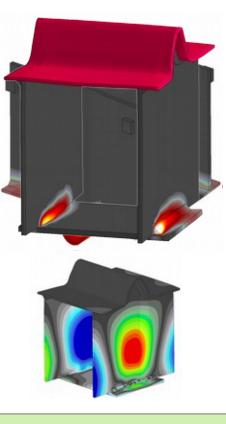
Überblick Wärmebehandlungssimulation

Einzelschritte

Wärmebehandlungsprozesse

Erzielbare Ergebnisse:

Gebrauchseigenschaften durch lokale Werkstoff- und Gefügeänderungen


Überblick Prozesskette

Prozesse

Prozess-Typ

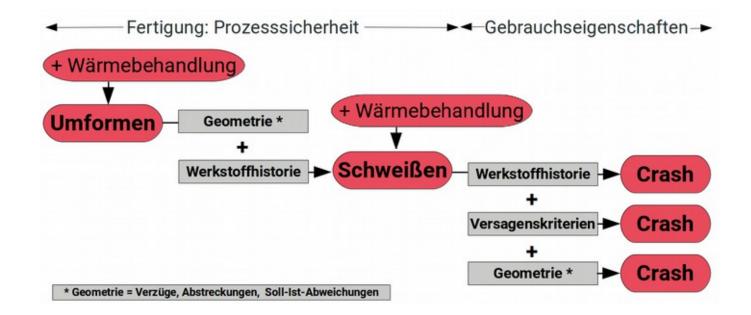
- Umformen
- Beschnitt
- Positioneren/ Zusammenbau
- Schweißen
- Widerstandspunktschweißen
- Wärmebehandlung

 Beliebige Kombinationen/ Wiederholungen

Einzelschritte

Erzielbare Ergebnisse über die gesamte Kette:

Abstreckungen, Verzüge, Eigenspannungen, lokale Werkstoffänderungen, Paßgenauigkeit

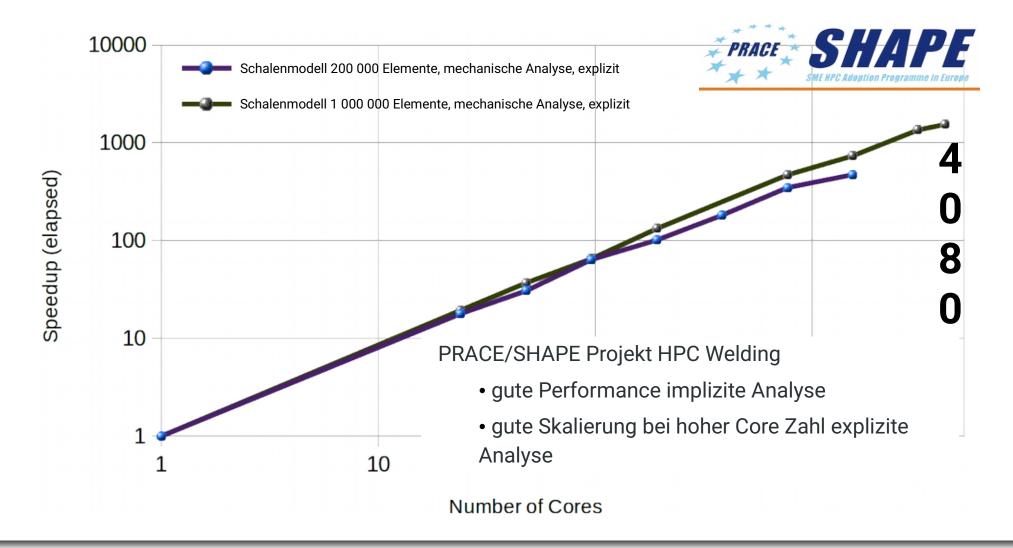


Prozesskette

Prozessketten-fähig durch 1-Code-Strategie

(Beispiel)

- Umformen
- Wärmebehandlung
- Schweißen
- Crashberechnung


Schweißsimulation auf High Performance Cluster-Systemen

- Der LS-DYNA Solver ermöglicht signifikante Geschwindigkeitssteigerungen per HPC
- Skaliert auch bei hoher Anzahl von verwendeten Kernen (mehrere 1000 cores explizit)
- Schweißstruktursimulation implizit und explizit möglich
- Die Cluster-Fähigkeit insbesondere bei expliziter Berechnung ist ein Alleinstellungsmerkmal

High Performance Computing

Mit DynaWeld ist jetzt schon das volle Spektrum der Schweißstruktursimulation und Wärmebehandlungssimulation möglich.

Gleiches gilt für die Weitergabe der Ergebnisse in anschließende Prozesse (Prozesskette).

Die Skalierung der Rechenzeiten auf Cluster-Systemen ist gegeben. Das gilt insbesondere bei expliziter Berechnungsweise.

Die Entwicklung ist fokussiert auf die tatsächliche Machbarkeit. Daraus folgt eine Reihenfolge in der Entwicklung:

- Entwicklung der Vorgehensweise
- Gegebenenfalls Solver-Anpassung
- Validierung
- GUI-Entwicklung für mehr Anwenderkomfort und Sicherheit

Dynaweld wird in Dienstleistungsprojekten eingesetzt.

Die so gewonnenen Erkenntnisse fließen direkt in die Entwicklung ein.

Zusammenfassung

Einige Beispiele möglicher Simulationsaufgaben:

Karosseriebau:

Fahrzeugtüren (Punkt- und Linienschweißen)

Sämtliche Klappen (Kofferraum, Heck-, Motorklappen...)

Motorträger, Hecklängsträger (Schweißen, gegebenenfalls lokale Wärmebehandlungen)

Bauteilgruppen (Punkt- und Linienschweißen)

Fahrzeugkomponenten aller Art (Schweißen, gegebenenfalls lokale Wärmebehandlungen) Fahrzeugdachhaut (Schweißen, Löten)

Schienenfahrzeugbau

Fahrwerkkomponenten (Fertigungskette, Belastungsanalyse)

Allgemeiner Maschinenbau

Getriebe (Welle-Nabe-Verbindung, Schweißen, gegebenenfalls lokale Wärmebehandlungen)

Kranbau, Baumaschinen-, Schiffbau ...

(Die Liste ist nur beispielhaft. Viele weitere Simulationsaufgaben sind möglich.)