
Optimization of the rear middle seat

Problem description

- Load case: luggage load case (3 boxes, with defined size and weight, hit the rear seat under a prescribed deceleration)
- Requirements: maximum dynamic forward X displacement of the upper left corner equal or less than a defined value
- Constraints: weight less than that of the reference middle seat. Other constraints (manufacturing, ...) are not considered
- Goal: to produce a concept idea of the rear middle seat structure with the same or better performance and with a lower weight

Workflow

Result

	Maximum forward X displacement	Weight (evaluated from LS-Dyna model)
Reference seat	158 mm	4.25 kg
Concept proposal	159 mm	3.75 kg
	0 %	-11.8 %

Conclusions

LS-Tasc has provided a solution which guarantees the same performance and which is 12% lighter than the reference middle seat. The LS-Tasc solution has also enabled us to better understand the crash event providing useful information on how to get a design simpler, lighter and with the same previous performance.