Seminar title	Jan.	Feb.	March	April	May	June	July
INTRODUCTORY CLASSES							
Introduction to LS-DYNA		1-3	29-31 2	26-28	30- 1Jun ²		
LS-PrePost - Geometry, mesh, and model creation		7 2			16 1		
Introduction to ICFD solver			16				
Introduction to Primer for LS-DYNA			23-24				
Introduction to Passive Safety for LS-DYNA							
ANSA & mETA							
Introduction to ANSA & mETA				19-20 1			
ANSA CFD Meshing, Intro course	31	2					
IMPLICIT CAPABILITIES							
Advanced Implicit Analysis in LS-DYNA					3-5 1		
NVH & Frequency Domain in LS-DYNA							
Introduction to LS-DYNA Non-linear Implicit Analysis	18	2	17 1				
CRASH							
Crash Analysis							
Joining Techniques in LS-DYNA				4-5 2			
Contacts in LS-DYNA			20 1				
Impact and Drop Tests in LS-DYNA			8 2				
METAL FORMING							
LS-DYNA, Simulation of Sheet Metal Forming Processes		7-9 ¹					
MATERIAL							
Material Modelling and User Defined Material in LS-DYNA					29-31 1		
Material Failure				19-20 ²			
Digimat Material Model for Fiber Reinforced Plastics			14-15 2				
Polymers/Elastomers				6-7 3			
Introduction to Composite Modelling			21-22 2				
Parameter Identification with LS-OPT					10 2		
OPTIMIZATION							
LS-OPT - Optimization & Robustness				4-6 1			
LS-OPT - Optimization				4-5 1			
LS-OPT - Robustness				6 1			
DEFENSE							
Explosives Modeling for Engineers							
Methods for Airblast on Structures (Blast Modeling)			Sched	luled on requ	ıest		
Penetration Modeling with LS-DYNA							
CIVIL ENGINEERING							
Concrete and Geomaterial Modeling							
PASSIVE SAFETY							
CPM Airbag Modeling							
MULTIPHYSICS/BIOMECHANICS							
ALE and FSI			21-22 3		15-16 ³		
Electromagnetism in LS-DYNA					12 3		
1 1 = Linköping 2 = Göteborg 3 = Stuttgart							

¹ = Linköping

August	Sep.	Oct.	Nov.	Dec.	Seminar title
					INTRODUCTORY CLASSES
29-31 2	27-29 1	24-26 2	28-30		Introduction to LS-DYNA
	18 2		21 1		LS-PrePost - Geometry, mesh, and model creation
	20 2				Introduction to ICFD solver
			23 2		Introduction to Primer for LS-DYNA
		11-12 2			Introduction to Passive Safety for LS-DYNA
					ANSA & mETA
		12-13			Introduction to ANSA & mETA
		11 1			ANSA CFD meshing, Intro course
					IMPLICIT CAPABILITIES
		17-19 ²			Advanced Implicit Analysis in LS-DYNA
	Sche	duled on req	uest		NVH & Frequency Domain in LS-DYNA
			1 2		Introduction to LS-DYNA Non-linear Implicit Analysis
					CRASH
					Crash Analysis
			13-14 1		Joining Techniques in LS-DYNA
		3 2			Contacts in LS-DYNA
			2 1		Impact and Drop Tests in LS-DYNA
					METAL FORMING
			8-9 2		LS-DYNA, Simulation of Sheet Metal Forming Processes
					MATERIAL
				4-6	Material Modelling and User Defined Material in LS-DYNA
	13-14 1				Material Failure
			20-21 2		Digimat Material Model for Fiber Reinforced Plastics
					Polymers/Elastomers
					Introduction to Composite Modelling
		4 1			Parameter Identification with LS-OPT
OPTIMIZATION					OPTIMIZATION
	12-14 2				LS-OPT - Optimization & Robustness
	12-13 2				LS-OPT - Optimization
	14 ²				LS-OPT - Robustness
					DEFENSE
		20 3			Explosives Modeling for Engineers
	Sche	duled on req	uest		Methods for Airblast on Structures (Blast Modeling)
		23-24 3			Penetration Modeling with LS-DYNA
					CIVIL ENGINEERING
		25-26 ³			Concrete and Geomaterial Modeling
					PASSIVE SAFETY
					CPM Airbag Modeling
					MULTIPHYSICS/BIOMECHANICS
	19-20 ³				ALE and FSI
		20 3			Electromagnetism in LS-DYNA
,					