A Full Suite of Hybrid III 50th Dummy Models with the Latest Upgrades

– from Runtime Savor, High Quality Performer, to the More Detailed Model (E)

Z. Zhou, M. Li, J. Rasico, F. Zhu, R. Kant (FTSS, Inc.)
A full suite of Hybrid III 50th dummy models with the latest upgrades

from runtime savor, high quality performer, to the more detailed model

Zaifei Zhou, Michael Li, Jim Rasico, Fuchun Zhu, Robert Kant

First Technology Safety Systems, Inc.

Contents

• Current model status
• Future development direction driven by customers
• Modular model
• Detailed model
FTSS H3-50th Dummy Models

- The PDB HIII 50th model has become the standard model per October 1, 2007
 - Significantly higher quality and validation level

For more information on the PDB model see also "Enhancements in Dummy Model Development", LS-DYNA User's Conference Gothenburg 2007

Customer Feedback

- "Models should be more detailed"
 - A group of OEM's (outside Germany)

- "Standard (PDB) model is "almost ready" and runtime is OK even for restraint development"

- "Further enhancements of the standard model should still be given highest priority"
 - German OEM's and German restraint suppliers

- "We need a fast(er) model but with acceptable quality to optimize restraints"
 - Restraint suppliers (outside Germany)
Three Development Directions

- **Research and develop detailed models**
 - Time step < 0.8 µs

- **Continue the standard models**
 - Maintain “1 µs” & order of element count
 - Lessons learned from detailed model are steering the standard model improvement.
 - Refine the mesh when proven to be beneficial

- **Explore “modular models”**
 - Targeting model speed-up and acceptable quality

Presentation Focus

- **This presentation includes**
 - project information of the detailed and the modular models.

- **More info of the standard models can be found in the proceedings of the LS-DYNA User’s Conference Gothenburg 2007**
 - and a status update is available upon request.
Modular FEA Model Concept

- FTSS initiated a pilot project to evaluate the benefits of a modular model
 - Combination of pure rigid and/or deformable modules;
 - A user defined selection.
- Development steps:
 - A deformable full dummy model was split into individual component modules according to joint/positioning functions;
 - CoG location and mass inertia properties were calculated for each module;
 - The counterpart rigid module model was created with rigid shells and calculated mass inertia properties;
 - Two full sets of exchangeable modules were created, sharing the same joint and connection definitions;
- Provides users with the ultimate flexibility in choosing a dummy model assembly and balancing model accuracy and run time.
 - Rigid modules for non-contact, not in the loading path components;
 - Deformable modules for injury induced areas.
Modular Model

Specification

- Modular functionality (*INCLUDE files)
 - Users choose either deformable or rigid module
 - Maintains existing geometry
 - Positioning file and data extraction capabilities preserved
- Optional:
 - Efficient Spring+Rigid Body neck and lumbar spine models with realistic performance
- Minimum time step controlled by deformable components

Modular Options

Standard vs. Modular H3-50th

Standard H3-50th
- Deformable components
- Positioning function
- Minimum time step: 1 µs
- Deformable element count: 50K

Modular H3-50th
- Rigid and/or deformable components
- Positioning function
- Minimum time step: 1 µs or higher
- Deformable element count: varies
Module Examples

- Deformable
- Rigid with assigned C.O.G and Mass Inertia

C.O.G. with mass inertia

Modular Model: Master File Format

- Main file:
 - *KEYWORDS
 - *CONTROL CARDS
 - *DATABASE CARDS
 - *INCLUDE
 - Include individual module file one by one
 - *CONTACT CARDS
 - *DUMMY POSITION TREE
Modular H3-50th Model

Conclusion

• The modular dummy model can be easily customized by users by selecting the desired combination of rigid and deformable modules;
• The modular model can be highly run-time efficient compared to a fully deformable dummy model.

Further work

• Customer beta testing to explore the benefits.
 – Can the model reduce the run-time significantly and still keep the acceptable predictability?

Detailed
HIII 50th Model
Standard vs. Detailed H3-50th

Standard H3-50th

- Detailed geometry
- Effective material model parameters
- Minimum time step: 1 µs
- Element count: < 100K

Detailed H3-50th

- Most accurate and more detailed geometry
- Vinyl and foam separated, allowing more accurate physical material model parameters to be applied
- Minimum time step: 0.8 µs
- Element count: < 300K

Detailed Geometry

Actual geometry is captured by X-Ray scan and laser scan
- Capture assembled dummy geometry
- Improved accuracy through exact material distribution

Whole dummy scan data + New model → Whole dummy scan data
New Material Tests

Multiple strain rate tests for key materials for better material parameters

<table>
<thead>
<tr>
<th>Material</th>
<th>Test Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl</td>
<td>Compression (4 strain rates)</td>
</tr>
<tr>
<td></td>
<td>Volumetric Compression</td>
</tr>
<tr>
<td></td>
<td>Stress Relaxation</td>
</tr>
<tr>
<td>Butyl Rubber</td>
<td>Compression (4 strain rates)</td>
</tr>
<tr>
<td></td>
<td>Tension</td>
</tr>
<tr>
<td></td>
<td>Stress Relaxation</td>
</tr>
<tr>
<td></td>
<td>Volumetric Compression</td>
</tr>
<tr>
<td>Foam</td>
<td>Compression (4 strain rates)</td>
</tr>
<tr>
<td></td>
<td>Stress Relaxation</td>
</tr>
<tr>
<td></td>
<td>Poisson's Ratio</td>
</tr>
<tr>
<td>Ensolite Foam</td>
<td>Compression (4 strain rates)</td>
</tr>
<tr>
<td>Rib Damping Material</td>
<td>Compression (4 strain rates)</td>
</tr>
<tr>
<td></td>
<td>Stress Relaxation</td>
</tr>
</tbody>
</table>

Total: 148 new tests

New Validation of Material Models

Abdomen foam

Jacket foam

Neck rubber

Knee rubber

Lumber spine rubber

Head skin

Compression
New Validation of Material Models

- Lumber spine rubber
- Neck rubber

New Component Tests

- New component tests were performed in addition to the extensive PDB component test series
 - More realistic loading conditions for the head, neck, thorax, lumbar spine, rib, pelvis, arms and legs
Component Validation Matrix

<table>
<thead>
<tr>
<th>Component</th>
<th>Test Type</th>
<th>#Tests</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>Drop test - 3 speeds</td>
<td>>100</td>
<td>Partly new tests</td>
</tr>
<tr>
<td></td>
<td>PDB Prescribed motion impact to forehead and cheek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neck</td>
<td>Calibration; flexion and extension 2 speeds</td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Head replacement direct impact: flexion, extension, straight and oblique</td>
<td>>40</td>
<td>New tests</td>
</tr>
<tr>
<td>Arms (upper, lower)</td>
<td>Multiple speeds dynamic drop - Need bone loadcell, new fixtures</td>
<td>48</td>
<td>New tests</td>
</tr>
<tr>
<td>Upper leg</td>
<td>Drop test - loadcell</td>
<td>36</td>
<td>New tests</td>
</tr>
<tr>
<td>Lower leg</td>
<td>Euro-foot impact tests on heel and toe</td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDB Multiple impacts - Instrumented tibia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knee</td>
<td>Knee slider</td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knee impact</td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td>Lumbar Spine</td>
<td>Pendulum - flexion / Extension</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Straight and Oblique torsion loading, multiple speeds - Seatbelt loading/wristing mode</td>
<td>56</td>
<td>New tests</td>
</tr>
<tr>
<td>Abdomen insert</td>
<td>Drop test: 2 speeds</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pelvis</td>
<td>Range of motion</td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quasi-static Compression tests</td>
<td>12</td>
<td>New tests</td>
</tr>
<tr>
<td>Thorax single rib</td>
<td>Orthogonal drop, multiple speeds</td>
<td>14</td>
<td>New tests</td>
</tr>
<tr>
<td></td>
<td>Oblique drop, multiple speeds</td>
<td>11</td>
<td>New tests</td>
</tr>
<tr>
<td>Thorax 6-rib sub-assembly</td>
<td>No pocket - round and square drop heads 3 speeds</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDB Chest impacts – different impactor shapes, locations and pulses</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiple speeds, straight and oblique impact</td>
<td>22</td>
<td>New tests</td>
</tr>
</tbody>
</table>
New Rib Validation

Flat

Oblique

© 2007 Copyright by DYNaMore GmbH
New Lower Leg Validation

New Upper Arm Validation

Page 25
6th German LS-DYNA Forum
Frankenthal
October 11-12, 2007

Page 26
6th German LS-DYNA Forum
Frankenthal
October 11-12, 2007

© 2007 Copyright by DYNAmore GmbH
More New Component Validations

Head

- Sled test serie 1
 - 1996: 15-48 X Rigid 2
 - 1996: 15-48 X Rigid 2

Upper leg

- Sled test serie 2
 - Planned sept 2007: x-40 X Rigid 10 12
 - FMVSS208/NCAP: x-40 X Rigid 10 12
 - x-56 X X Rigid 4 4
 - x-56 X X Deform 2 2

Knee

Lumbar Spine

Full Dummy Validation

<table>
<thead>
<tr>
<th>Test</th>
<th>Pulse (G-km/h)</th>
<th>Belt</th>
<th>AB</th>
<th>Seat</th>
<th># ATD's</th>
<th>Total # tests including repeats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sled test serie 1</td>
<td>15-48</td>
<td>X</td>
<td></td>
<td>Rigid</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>15-48</td>
<td>X</td>
<td>Rigid</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sled test serie 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned sept 2007</td>
<td>x-40</td>
<td>X</td>
<td></td>
<td>Rigid</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>FMVSS208/NCAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-40</td>
<td></td>
<td></td>
<td></td>
<td>Rigid</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>x-56</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Rigid</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>x-56</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Deform</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sled test serie 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned oct 2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD9</td>
<td>18-41</td>
<td>X</td>
<td></td>
<td>Rigid</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Picture courtesy of PDB
Detailed H3-50th Model

Conclusion
• The first correlation improvements on component level have been achieved through more detailed geometry meshing and material modeling;
• Further proof is needed to claim the benefit of detailed model at full dummy level.

Future work
• Complete validations on both component and full dummy level;
• Benchmark the standard and detailed model on full dummy level;
 – In-house and customer beta testing.
• Study dummy hardware reproducibility and explore development of a stochastic model to consider effects of physical dummy variations.
 – FTSS history database.