CO-SIMULATION METHOD OF FLUID STRUCTURE COUPLINGS IN HOPSAN AND LS-DYNA

Håkan Andersson
Atlas Copco Construction Tools, Kalmar, Sweden
2016-10-13
COMMITTED TO SUSTAINABLE PRODUCTIVITY

We stand by our responsibilities towards our customers, towards the environment and the people around us. We make performance stand the test of time. This is what we call – Sustainable Productivity.
CO-SIMULATION METHOD OF FLUID STRUCTURE COUPLINGS

Introduction

- **Background**
 - Product development of hydraulic hammer and the need for virtual prototypes
 - Decoupled methods used today do not capture failure mechanisms experienced at tests
 - End-product performance highly affected by fluid-structure interaction

- **Ultimate vision**
 - Simulate the hydraulic hammer under real working conditions where the interaction to the excavator and the working material is included

- **New simulation method**
 - System level simulation model
 - Simplified method for fluid system simulation, FSI-methods are not feasible for system level simulations
 - Stress, fatigue, wear and noise requires 3D structure simulation model
 - Efficient method to simulate fluid-structure couplings
CO-SIMULATION METHOD OF FLUID STRUCTURE COUPLINGS

Research Project

- To develop a new simulation tool that is able to capture the main fluid and structural mechanisms of a hydraulic hammer
- Co-simulation of fluid power and structural mechanics -models
- Simulate the running condition for the hydraulic hammer at the in-house test rig and ultimately in its real working environment

Partners
- Atlas Copco Construction Tools – Project owner, Industrial Ph.D.
- Solid Mechanics, Linköping University – Academic
- Fluid and Mechatronic Systems, Linköping University – Hopsan
- Dynamore Nordic – Software, ass. academic advisor
CO-SIMULATION METHOD OF FLUID STRUCTURE COUPLINGS

New simulation method

- 1D system simulation model incl. fluid power system
- 3D structural mechanics simulation model
- Co-simulation interface
CO-SIMULATION METHOD OF FLUID STRUCTURE COUPLINGS

New simulation method

- Implementation
 - Hopsan: 1D system simulation model
 - LS-DYNA: 3D structural mechanics simulation model
 - Development of co-simulation interface according to the FMI-standard
 - Co-simulation communication
 - FMU on the Hopsan side
 - UDF on the LS-DYNA side
 - TCP/IP
 - Native LS-DYNA Keyword format FMU-configuration file
 - Automatic FMU-generator
 - Python
 - Time step, timing and synchronization
 - Hopsan simulation master and administering the simulation
CO-SIMULATION METHOD OF FLUID STRUCTURE COUPLINGS

Simulation Tools

- System level simulation of multi domain fluid power models, hydraulic/mechanic
- Hopsan
 - Hopsan is a 1D free multi-domain system simulation tool developed at the division of Fluid and mechatronic systems at Linköping university
 - Bi-directional delay lines or transmission line elements, Transmission Line Modelling (TLM)
 - Explicit time integration technique
 - Fluid, mechatronic, electric power, flight dynamics etc.
 - Co-simulation using FMI-standard
 - TLM element happens to be very efficient for co-simulation couplings
 - Efficient and accurate technique for simulation of pressure waves in the fluid system
CO-SIMULATION METHOD OF FLUID STRUCTURE COUPLINGS

Simulation Tools

- Structural mechanic simulation tool, LS-DYNA
 - Well known software suit for 3D structural mechanic simulations
 - Stress
 - Fatigue
 - Noise
 - Explicit time integration technique
 - No co-simulation interface according to FMI-standard
 - Communication through the user defined function (UDF)
 - Efficient and accurate technique for simulation of stress waves in the structure
CO-SIMULATION METHOD OF FLUID STRUCTURE COUPLINGS

Demonstration and validation

- Simple fluid power test model in Hopsan
- 3D FE-model of hydraulic cylinder in LS-DYNA
- Co-simulation interface for one hydraulic cylinder
- Typical mechanisms from a hydraulic percussion unit
CO-SIMULATION METHOD OF FLUID STRUCTURE COUPLINGS

Demonstration and validation

- Case 1: Hydraulically controlled piston, comparison pure Hopsan vs. co-simulation
 - Rigid body piston model in Hopsan and LS-DYNA

- Case 2: Hydraulically controlled piston with external force, comparison pure Hopsan vs. co-simulation
 - Rigid body piston model in Hopsan and LS-DYNA

- Case 3: Co-simulation of elastic bodies with impact
 - No reference model in Hopsan
 - Elastic material in LS-DYNA
CO-SIMULATION METHOD OF FLUID STRUCTURE COUPLINGS

Demonstration and validation

- Case 1: Hydraulically controlled piston, comparison pure Hopsan vs. co-simulation
Case 2: Hydraulically controlled piston with external force, comparison pure Hopsan vs. co-simulation
CO-SIMULATION METHOD OF FLUID STRUCTURE COUPLINGS

Demonstration and validation

- Case 3: Co-simulation of elastic bodies with impact
CO-SIMULATION METHOD OF FLUID STRUCTURE COUPLINGS

Summary

- A co-simulation method for a fluid–structure coupling has been developed
- The implemented co-simulation interface is based on the FMI-standard and TLM
- Flexible engineering-friendly automatic generation of the interface FMU module
- Computationally inexpensive 1D-system fluid simulation
- Extended simulated time period facilitated due to an efficient fluid simulation
- Short duration dynamics in both the fluid and the structural system are resolved
- Full 3D results and time history data from the structural FE-simulation are available for, e.g. stress analysis, fatigue assessment or calculation of acoustical radiation
- The first published paper in this project
COMMITTED TO SUSTAINABLE PRODUCTIVITY.