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First Step - Simulation of sheet metal forming

Quasi static simulations of

the deep drawing process
Rigid tooling

Predicting wrinkling, thickness,

rupture, springback, blank
geometry etc.
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Simulation of sheet metal forming
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Simulation of sheet metal forming

Automatic optimization to find

Blank size geometry
Drawbead force and geometry
Springback compensated tools
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Simulation of ”’bulk forming”

Bulk forming is a generic term
for forming processes with large
deformations, e.g. ironing.

Bulk forming typically involves
(very) large deformations where
distorted elements becomes an
Issue.

In LS-DYNA there are several
ways to deal with this problem.
Euler/Lagrange
2D/3D Adaptivity
EFG/SPH meshless methods




Bulk Forming - Orbital forming at SKF
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Orbital tool 11" European LS-DYNA Conference 2017, Salzburg, Austria

Work piece Orbital forming of SKF's hub bearing units

Edin Omerspahic', Johan Facht" Anders Bernhardsson®
'Manufacturing Development Centre, AB SKF

*DYNAmore Nordic
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Second step - Hot Stamping of Boron Steel

Boron steel blanks are heated to austenite phase and the
formed and subsequently cooled to form martensite
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Using thick shell elements in tooling

By using thick thermal _

elements with _approprlate _____ T
boundary conditions and
properties, it is possible to bo

1.2367: tool surf temp for Imm blank
T

model

mimic the solid tooling
temperatures using a
shell element tool mesh.

- _A solid ref
_B shell no-flux
C shell flux




Hot stamping with conventional simulation methods

Capabilities
correct prediction of forming in the
austenitic state:

stresses and strains

400

200 /4~

thinning
forces 100

prediction of temperature history in the j j g g g
blank/part 0 0.1 0.2 0.3 0.4 0.5

Limits
prediction of microstructure (phase fractions)
and hardness:

only rough estimations based on CCT diagram can
be made

not possible for tailored tempering processes

only rough estimations of final part
properties like strength and hardness
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*MAT_244/*MAT_UHS

Based on the work by Akerstrom and Bergman, Luled.

B Material tailored for hot stamping / press hardening processes

Phase transition of austenite into ferrite, pearlite, bainite and martensite for cooling

Strain rate dependent thermo-elasto-plastic properties defined for individual phases
Transformation induced plasticity algorithm _ I e B

Re-austenitization during heating

User input for microstructure computations
is chemical composition alone
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Welding functionality
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Different transformation start temperatures for heating and for cooling
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Third step - Simulation of Welding

Virtual process chain including Forming and Welding

Using implicit/explicit solvers, mechanical and thermo-mechanical
coupling and solid and shell elements.

B Novel material models, heat sources for welding and pre-processing

B New material model for
13" International LS-DYNA Users Conference Session: Simulation
Simulation of Residual Deformation from a Forming and
Welding Process using LS-DYNA®
Mikael Schill’, Eva-Lis Odenberger’ <:|
'D¥YNAmore Nordic AB, Sweden

B *MAT 244 is tailored for press-hardening and Boron steels and is not
welding processes and
? Industrial Development Centre in Olofstrom AB, Sweden springback compensation Cooling/springback

necessarily useful for
Q ‘_Mapping L
heat treatment

welding
- MAT 254 Forming Springback

Weld
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Welding Simulations - *MAT_CWM

The element can either be ’solid”, Liquid” or ’Ghost”.
Solid: Material is activated in a previous weld pass
Liquid: Material will be activated in the current weld pass
Ghost: Material will not be activated in the current weld pass

When the temperature reaches a specified temperature, material is
activated and recieves “material” properties.

Apart from the ghost element function, the material model also includes
Anneal functionality.

Above the specified anneal temperature, all history variables such as
hardening and back stress are set to zero.

Ghost

material

Temperature
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Heat source

Novel keyword *BOUNDARY THERMAL WELD TRAJECTORY
Heat source movement implemented in the thermal solver
Heat source follows a node string defined in *SET_NODE
Subcycling of the heat source

User controlled integration for accurate heat input
Goldak, cone and double cone heat sources
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Pre-processing - Welding plan

By clicking the boxes, the
welding order is determined.

Possibility to add or remove
stages.

To each step, corresponding
clamping and thermal boundary
condition can be chosen.

Double clicking on the rows
opens the corresponding
definitions.

If the properties are defined,
the box is coloured green.

When the process is set up, an
LS-DYNA input file is exported.

The setup of the welding

simulation can be

ggs}vedlloaded from an ASCII
ile.

Sequence | Welds | Struct. B.C. | Therm. B.C.|

1

2

3|

4

== Welds ==
6 Weld Pass 1
B Weld Pass 2 | Application | Settings Help
A Occupant Safety 3
SPringhaCk - - &bﬁ?j Metal Forming 4
== Struc. B.C. == Q?' Model Checking v
2 edae x ,q,\\) Taols v EL Media
§ Crash Safety 3 CurveGen
Jedgez ol :
A »| S lintegral
4 edgeZ z - Iﬁ ALE Setup % Welding Simulation
5 e‘he ¥ - ;“T: Granular Flow Setup
D Customize
e - - ﬂ Segment Pressure Wave
== Therm. B.C. ==
Load ] [ Save l | [ Export l ’ Browse
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Welding Example - Simulation results after forming

The measured springback after forming are determined
using a 3D scanning and best fit CAD evaluation method
In a least square sense.
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Simulated
Measured

Measured and predicted shape deviation after forming (mm).

Lluis Pérez Caro, "Modelling of Forming and Welding in Alloy 718, Licentiate thesis, ISSN 1402-1757
Luled University of Technology, 2017
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Welding Example

Temperature Stress Effective plastic strain

Lluis Pérez Caro, "Modelling of Forming and Welding in Alloy 718, Licentiate thesis, ISSN 1402-1757
Luled University of Technology, 2017
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Welding Example - Simulation results after forming

The measured springback after welding are determined
using a 3D scanning and best fit CAD evaluation method
In a least square sense.

0.169 0.39 -2.245

0.260

Measured Simulated

Measured and predicted shape deviation after welding (mm).

Lluis Pérez Caro, "Modelling of Forming and Welding in Alloy 718, Licentiate thesis, ISSN 1402-1757
Luled University of Technology, 2017
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Fourth step - *MAT 254 - Generalized phase change

New material formulation in LS-DYNA with:

Up to 24 individual phases

List of generic phase change mechanisms for each possible phase
change in both cooling and heating

Material incorporates all features of *MAT 244

Phase change parameters are given in tables and are not
computed by chemical composition

Parameters of the material might come from a material
database or a microstructure calculation

Will be suitable for a wider range of steel alloys and
aluminum alloys




Phase content [-]

*MAT 254 - Generalized phase change
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Residual stresses with *MAT 254

B Nitschke-Pagel test
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aus Stahl, Diss, Karlsruhe, 2008
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Fifth step - Going into multiphysics
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Coupling with the electromagnetics solver

Electromagnetic solver coupled with
the mechanical and thermal solver

LS-DYNA solves the EMF problem
using a FEM+BEM method.

The Maxwell equations for the solid
conductors are solved with FEM

The Maxwell equations for the insulators
and air are solved with BEM
Advantages with BEM:

No air mesh is needed and thus avoids
meshing problems such as:

Mesh around complex conductors.

Re-mesh of air surrounding moving
conductors.

Mesh in small gaps between
conductors.

It does not need introduction of
boundary infinite boundary condition

Coil's

Coil / magnetic field
Eddy current's
/magnetic field
Eddy A NS\ 4
currents > LN >
y (& >)) _ i
4 B < — Conductive
b > material

| L~

Courtesy of SAPA Technology
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Coupling with the electromagnetics solver

Tem peratura
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Coupling with the electromagnetics solver
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Coupling with the ICFD solver

Cycled hardening simulations identifies hot spots in
tooling.

Bainite and
Martensite

. :
_ . 100 % Martensite

100

part removal

Temperature

After cooling
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Cooling channel simulation - CFD

Determine heat transfer coefficients using CFD
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Summary

Simulation of the virtual process chain will involve
Different physical fields
Different type of solvers
Different resolution
Different descriptions

Simulation of the virtual process chain involves moving
the material properties through the simulations ensuring
that the complete history of the material is predicted.

The simulations need to be solved in a coupled manner
where the different solvers communicate within the same
code

The solvers need to be scalable over several cores In
order to run the simulations in a reasonable timeframe.
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Thank you!
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