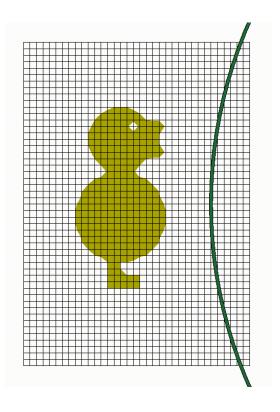

Overview of the SALE solver in LS-DYNA for defense applications

David Fyhrman, DYNAmore Nordic

Background SALE


- SALE = Structured ALE
- Based on automatically generated block structured mesh
- Introduced 2017 in LS-DYNA R10
- Supports SMP/MPP in 2D/3D
- Uses the same theory as the regular ALE solver with respect to advection and interface reconstruction, but a separate coding
- This allows...
 - Faster sorting and searching
 - More efficient and cleaner code

Background SALE

- Benefits compared to regular ALE
 - ✓ Easier mesh generation
 - ✓ Smaller input files
 - ✓ Uses less memory
 - ✓ Runs faster
 - ✓ New user-friendly setup
- Drawbacks compared to regular ALE
 - X More complex fluid geometries can not be automatically meshed
 - X Can not merge fluid elements to Lagrangian structure elements
- Main difference compared to regular ALE
 - The fluid part is either a mesh part or a material part, it can not be both
 - New options to create sets

SALE keyword family

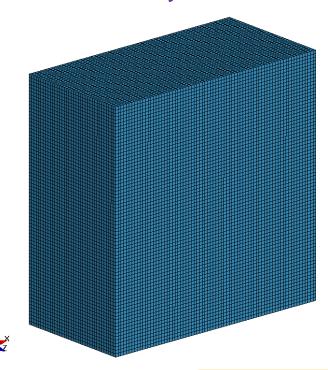
- *ALE_STRUCTURED_FSI
- *ALE STRUCTURED MESH

- → New cleaner card
- → Generate mesh and invoke the SALE solver
- *ALE_STRUCTURED_MESH_CONTROL_POINTS → Provide mesh spacing information
- *ALE_STRUCTURED_MESH_MOTION
- *ALE_STRUCTURED_MESH_REFINE
- *ALE_STRUCTURED_MESH_TRIM
- *ALE_STRUCTURED_MESH_VOLUME_FILLING
- *ALE_STRUCTURED_MULTI-MATERIAL_GROUP

- → New user-friendly setup
- *ALE_STRUCTURED_MULTI-MATERIAL_GROUP_AXISYM
- *ALE_STRUCTURED_MULTI-MATERIAL_GROUP_PLNEPS

SALE setup – Step #1 Mesh

*ALE	STRUCTUR	RED MESH						
\$#	mshid	_dpid	nbid	ebid				
	1	5	100004	100001				
\$#	cpidx	cpidy	cpidz	nid0	lcsid			
	(1)	(2)	(3)	100001	(123)			
*ALE		RED_MESH_C	ONTROL_POI	NTS				
\$#	cpid	unused	unused	sfo	unused	offo		
	(1)			1.0		0.0		
\$#		n		x				
		1		-555.0				
		75		555.0				
	_STRUCTUR	RED_MESH_C	ONTROL_POI	NTS				
\$#	cpid	unused	unused		unused	offo		
	(2)			1.0		0.0		
\$#		n		x				
		1		-555.0				
		75		555.0				
	_STRUCTUR	RED_MESH_C	ONTROL_POI	NTS				
\$#	cpid	unused	unused	sfo	unused	offo		
	(3)			1.0		0.0		
\$#		n		x				
		1		-555.0				
		38		0.0				
	_	INATE_NOD						
\$#	cid			n3	_	dir		
	(123)	100001	100002	100003	0x			
*NOD	_							
	nid		x	У		z	tc	rc
	0001	0		0.0		0.0	0	0
	00002	10		0.0		0.0	0	0
10	0003	0	.0	10.0		0.0	0	0


X-direction

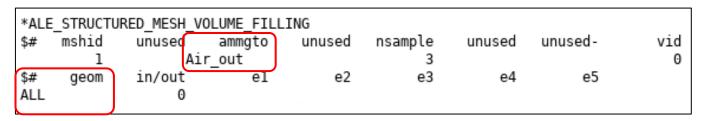
Y-direction

Z-direction

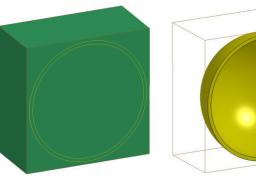
Mesh origin

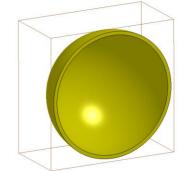
Local coordinate system

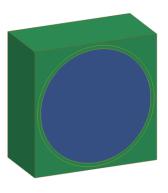
SALE setup – Step #2 Multi-materials

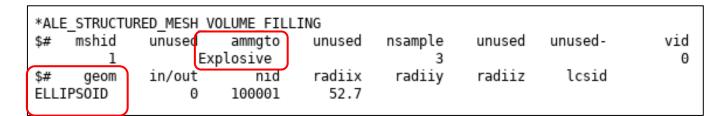

- *ALE_STRUCTURED_MULTI-MATERIAL_GROUP
 - Possible to use names instead of IDs → Names for volume filling and *SET_MULTI-MATERIAL...
 - Specify material and EOS

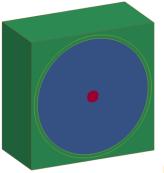
- → No need for *PART and *SECTION
- The ELFORM is set automatically Therefore different cards for 2D
- Each multi-material could have its own reference pressure PREF


*ALE STRUCTURED MULTI-MATERIAL GROUP									
\$#ammg_name	mid	eosid	unused	unused	unused	unused	pref		
Explosive	1	1					0.0		
Air_in	2	2				1.0)1325E-4		
Air out	2	2				1.0)1325E-4		

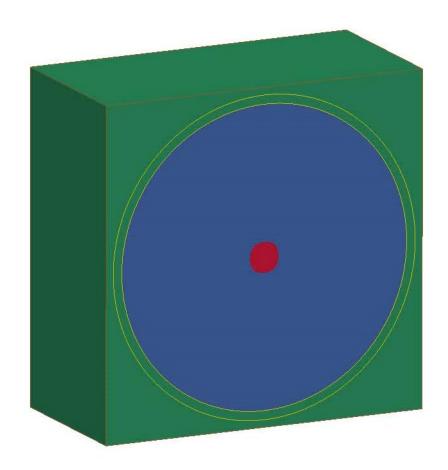

SALE setup – Step #3 Fill the mesh


Air_out

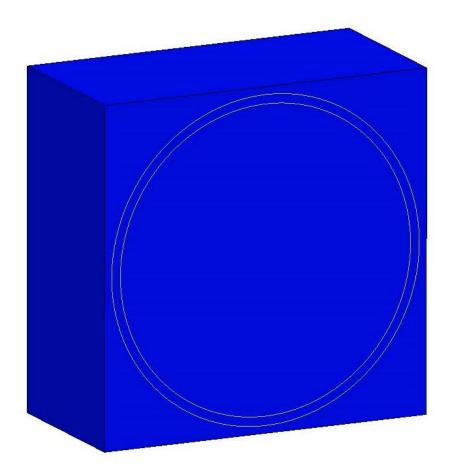



*ALE_STRUCTURED_MESH_VOLUME_FILLING	
\$# mshid unused ammgto unused nsample unused	unused- vid
1Air_in 3	0
\$# geom in/out segsid e2 e3 e4	e5
SEGSET 0 100	

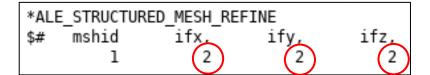
Air_in

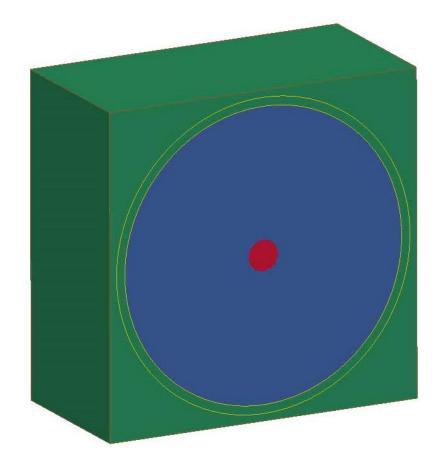


Explosive

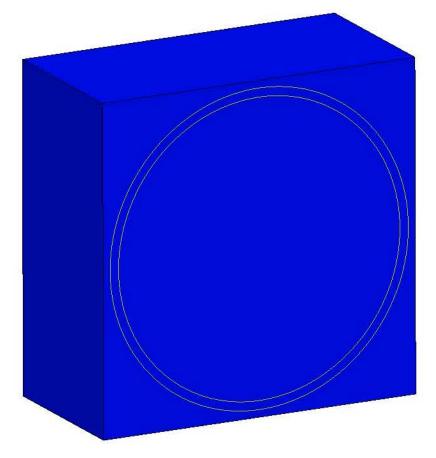


Example – Contained detonation

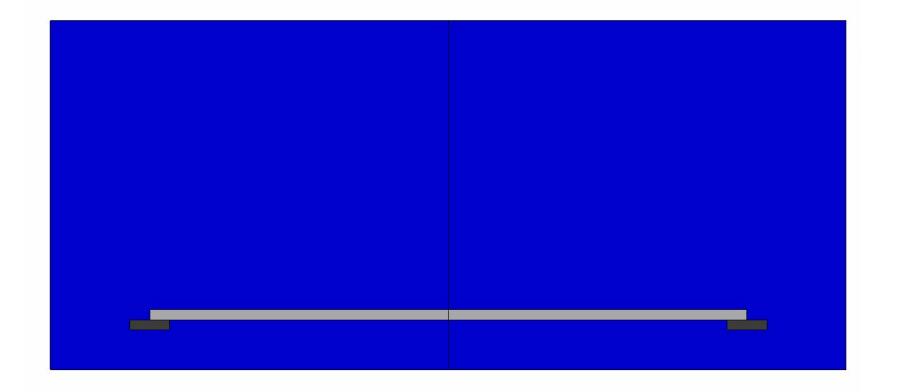

Multi-materials



Pressure

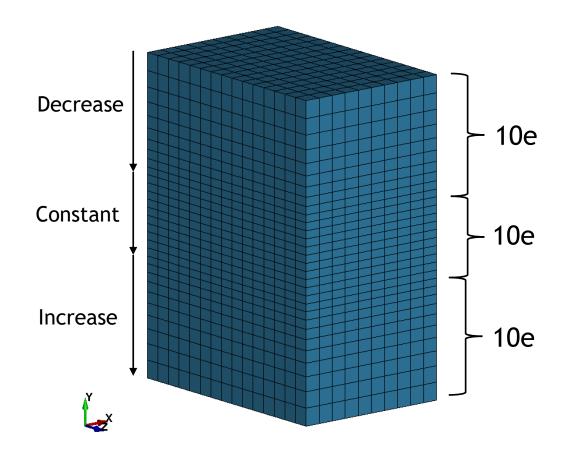

Example – Contained detonation refine

Multi-materials



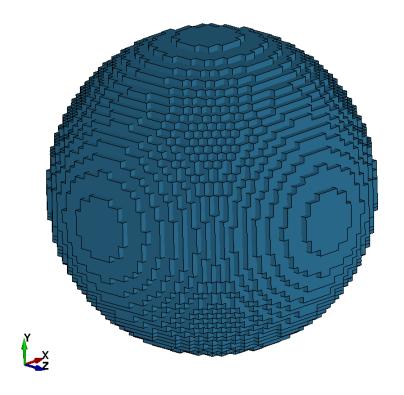
Pressure

SALE in 2D


- *ALE_STRUCTURED_MULTI-MATERIAL_GROUP_AXISYM
- *ALE_STRUCTURED_MULTI-MATERIAL_GROUP_PLNEPS

SALE progressive mesh spacing

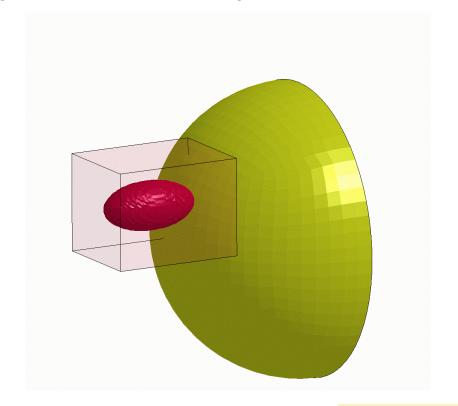
*ALE	STRUCTUE	RED MESH				
\$#	mshid	_dpid	nbid	ebid		
	1	2	100000	100000		
\$#	cpidx	cpidy	cpids	nid0	lcsid	
	(10)	(20)	(30)	1	123	
*ALE	STRUCTUR	RED_MESH_C	ONTROL_POI	NTS		
\$#	cpid	unused	unused	sfo	unused	offo
	(10)			1.0		0.0
\$#		n		×		
		1		0.0		
		11		100.0		
*ALE	_STRUCTU	RED_MESH_C	ONTROL_POI	NTS		
\$#	cpid	unused	unused	sfo	unused	offo
	(20)			1.0		0.0
\$#		n		×		ratio
		1		0.0		-0.1
		11		75.0		
		21		125.0		0.1
		31		200.0		
			ONTROL_POI			
\$#	cpid	unused	unused	sfo	unused	offo
	(30)			1.0		0.0
\$#		n		×		
		1		0.0		
		16		150.0		



SALE mesh trimming

- *ALE_STRUCTURED_MESH_TRIM
 - Option = PARTSET, SEGSET, PLANE, CYLINDER, BOXCOR, BOXCPT, SPHERE

*ALE	_STRUCTU	RED_MESH							
\$#	mshid	dpid	nbid	ebid					
	1	2	100000	100000					
\$#	cpidx	cpidy	cpidz	nid0	lcsid				
	(10)	(10)	(10)	1	123				
*ALE		RED_MESH_C	ONTROL_POI	NTS					
\$#	cpid	unused	unused	sfo	unused	off	0		
	(10)			1.0		0.	0		
\$#		n		×					
		1		-100.0					
		101		100.0					
*ALE	_STRUCTU	RED MESH TI	RIM						
\$#	mshid	option	oper	flip	nid		r	e3	e4
	1SP	HERE	0	0	1	50.	0	0.0	0.0
*DEF	FINE_COOR	DINATE_NOD	ES						
\$#	cid	n1	n2	n3	flag	di	r		
	123	1	2	3	0X				
*NOI	DE								
\$#	nid		×	У		Z	tc	rc	
	1	0	. 0	0.0		0.0	0	0	
	2	1	. 0	0.0		0.0	0	0	
	3	0	.0	1.0		0.0	0	0	

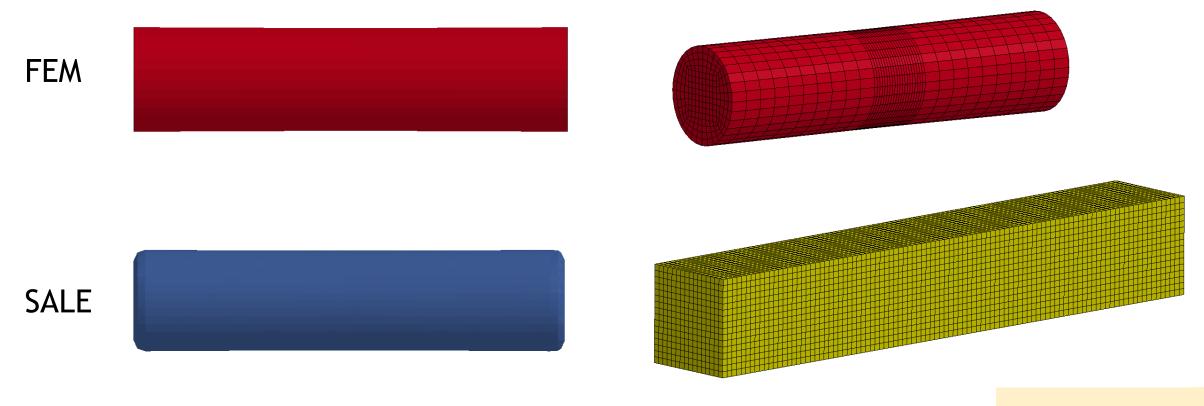


SALE mesh motion

- *ALE_STRUCTURED_MESH_MOTION
 - FOLLOW_GC: Mesh follow the mass center of the fluid (bird, projectile)
 - COVER_LAG: Mesh follow the motion of a Lagrangian structure (airbag)

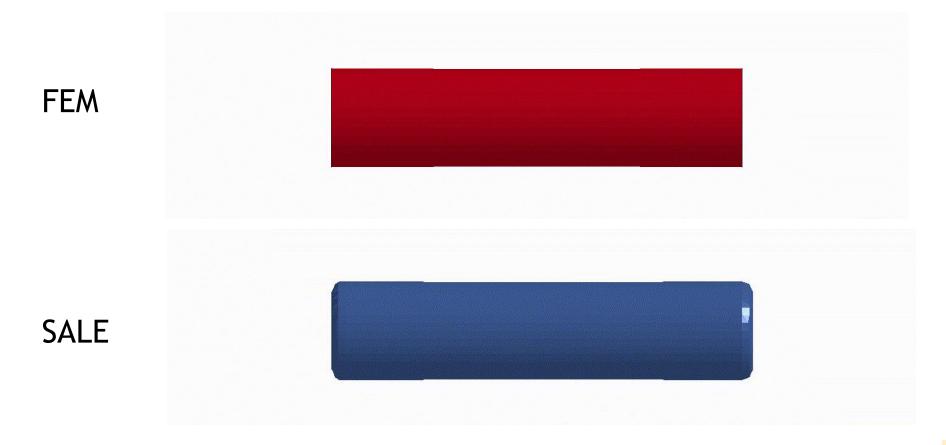
```
*ALE_STRUCTURED_MESH_MOTION
$# mshid option ammgsid explim
1FOLLOW_GC 1 2.0
```


SALE create sets

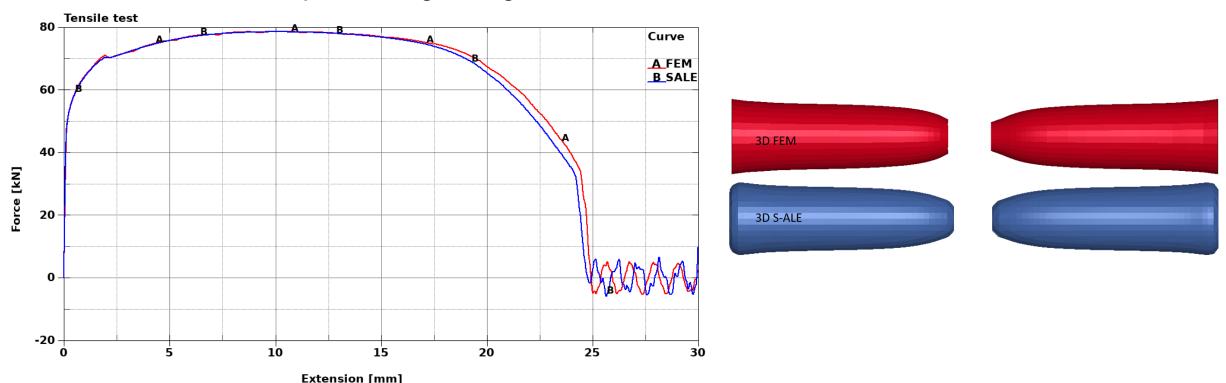

- Two new options available for SALE to create sets
- *SET_NODE_GENERAL, *SET_SEGMENT_GENERAL or *SET_SOLID_GENERAL
 - Option = SALEFAC: select the mesh face
 - Option = SALECPT: select with a box
- Example of a symmetry boundary condition

	NDARY_SPO	_						
\$#	nsid	cid	dofx	dofy	dofz	dofrx	dofry	dofrz
	1	0	0	0	1	0	0	0
*SET	NODE_GEN	NERAL						
\$#	sid	da1	da2	da3	da4	solver		
	1	0.0	0.0	0.0	0.0ME	CH		
\$#	option	mshid	-x	+x	-y	+y	-z	+z
SALE	FAC	1	0	0	0	0	0	1

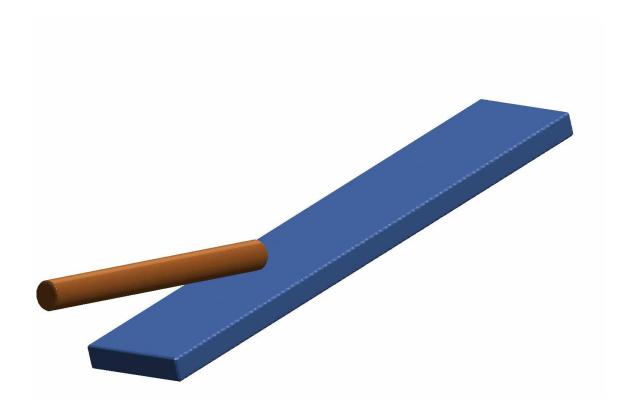
Benchmark – Tensile test

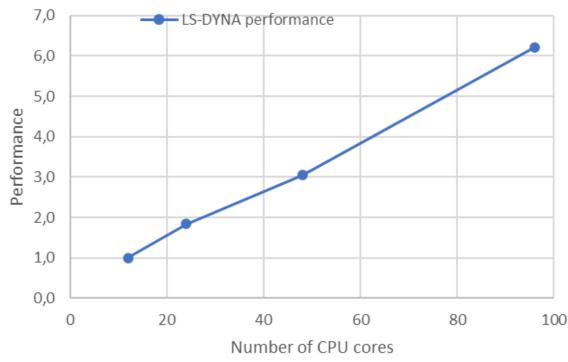

- Near quasistatic tensile test with a slight waist to induce consistent location of the necking
- *MAT_JOHNSON_COOK (015) with an equation of state and fracture model

Benchmark – Tensile test

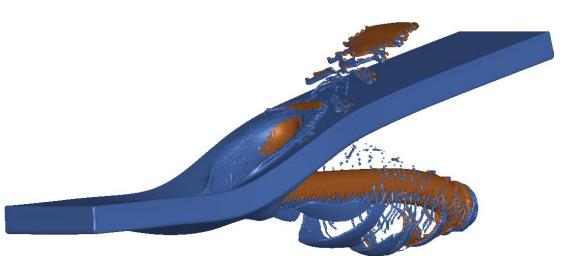

The output format d3sale is used for higher rendering quality

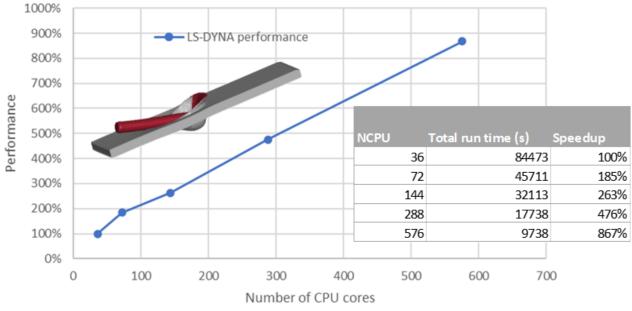
Benchmark – Tensile test


- FEM run time 37 sec on 10 cores
- SALE run time 75 sec on 10 cores
- Force vs Extension comparison good agreement!

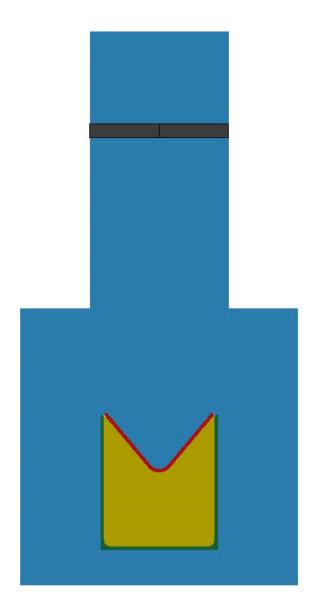

Benchmark – Performance small model

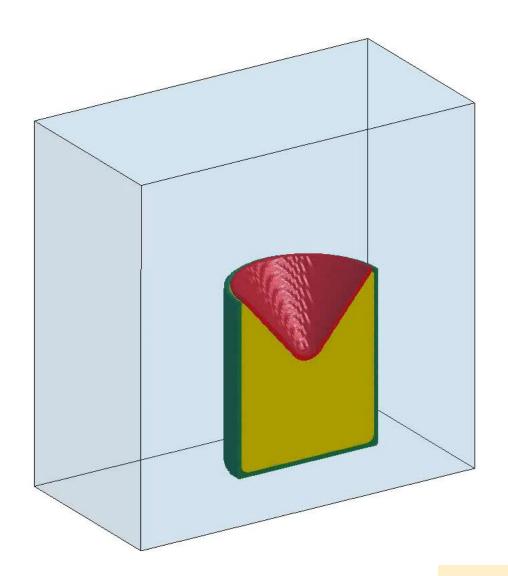
- High velocity flying steel plate
- 0.4 M elements, scaling from 16 to 96 cores


Scaling on computer clusters - 0.4 M element model

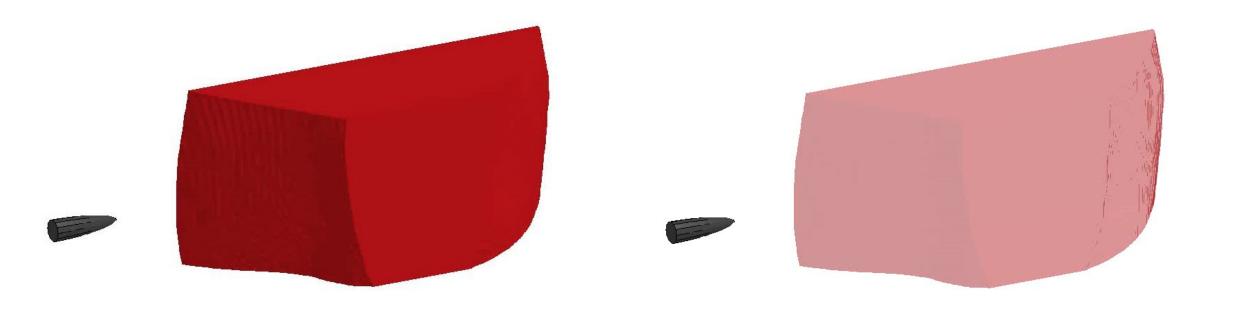

Benchmark – Performance large model

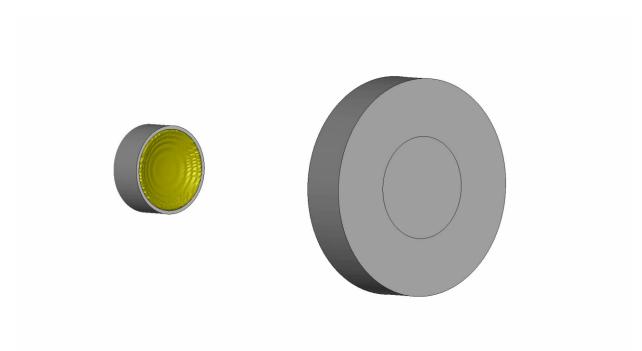
- High velocity flying steel plate
- 200 M elements, scaling from 36 to 576 cores

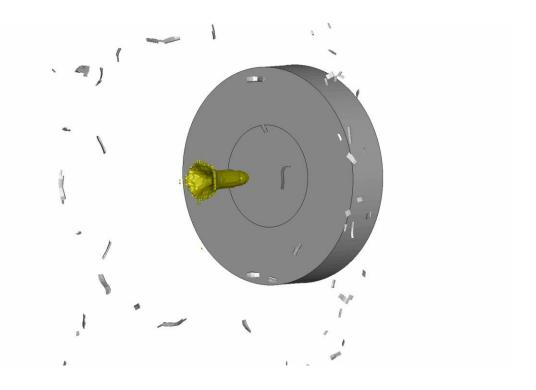



Scaling on computer clusters - 200M element model

Application – Shape charge in 2D & 3D

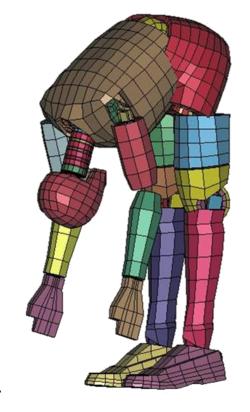



Application – Flying bullet with FSI



Application – Explosively formed penetrator

Recent progress



- The *ALE_STRUCTURED_FSI leakage prevention continuously improves – Try the latest version…
- Thermal support implemented for single material
- FSI thermal support implemented to allow heat exchanges between fluids and structure
- Multi-material thermal support under development...
- *CONTROL_EXPLOSIVE_SHADOW has been reimplemented for SALE
- DYNAmores Defense guideline with best practices is being updated...
- It is distributed to customers with reasonable need

Thank You

DYNAMore Nordic AB Brigadgatan 5 587 58 Linköping, Sweden

Tel.: +46 - (0)13 23 66 80 info@dynamore.se

www.dynamore.se www.dynaexamples.com www.dynasupport.com www.dynalook.com

© 2022 DYNAmore Nordic AB. All rights reserved. Reproduction, distribution, publication or display of the slides and content without prior written permission of the DYNAmore Nordic AB is strictly prohibited.

DYNAmore worldwide Germany - France - Italy - Sweden - Switzerland - USA Find us on

