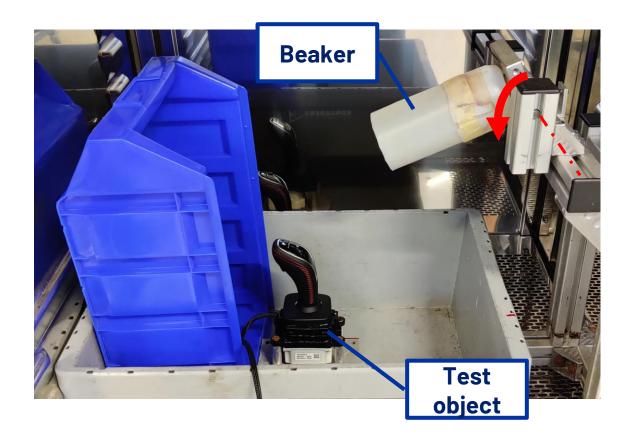


### **BACKGROUND**

Products in the cabin of vehicles can be exposed to fluids by splashing.

The scenario is that an occupant has an open container with drinking fluid (water, coffee, soft-drink etc) and by accident spills the content in the cabin onto a product.

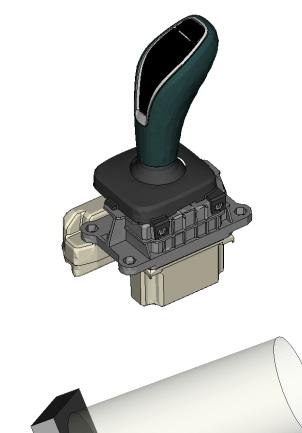
Fluid entering inside products can cause issues like electrical short-cuts and sticky mechanics. Gaps between parts, seals, drainage holes and run-off paths for fluid needs to be designed in order to manage the fluid.

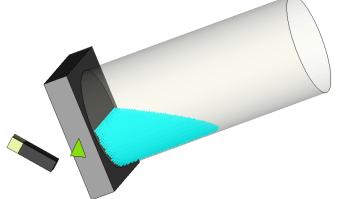

This presentation focus on a dynamic splash-test to see if simulations can contribute to knowledge about product performance in this context.





#### **TEST SET-UP AND PERFORMANCE**


- > Test object placed at specified distance from beaker
- > Beaker mounted on a base-plate with a hinge passing through centerline of beaker base.
- > An end-stop restricts base-plate rotation.
- > Beaker starting position is tilted towards test-object and contains fluid
- > Beaker released rotates down and "releases" fluid
- > Fluid splashes onto the test object






#### **FEA MODELLING**

- > Structural parts modelled with Shell & Solid Finite Elements
  - » Beaker and test rig are modelled as elastic
  - » Test object assumed to be rigid (stiffness fluid << test object)</p>
- > Fluid modelled with SPH
  - » Incompressible
  - » Form 15 enhanced fluid formulation
  - » Use EOS\_GRUNEISEN (or EOS\_MURNAGHAN)
- > Fluid Structure Interface (FSI) by using Node to Surface Contact
  - » Part with SPH elements as slave
  - » Use SOFT = 1
  - » Set SST to correspond to particle size







## **FSI - CONTACT SETTINGS**

Contact parameters are important to get realistic interaction between fluid and structure

|   | *CONTACT_AUTOMATIC_NODES_TO_SURFACE_(ID/TITLE/MPP)_(THERMAL) (3) |            |            |            |             |             |            |            |
|---|------------------------------------------------------------------|------------|------------|------------|-------------|-------------|------------|------------|
| 4 | SSID □                                                           | MSID  ●    | SSTYP      | MSTYP      | SBOXID   •  | MBOXID □    | <u>SPR</u> | MPR        |
|   | 1                                                                | 400        | 3 ~        | 3 ~        | 0           | 0           | 0 ~        | 0 ~        |
| 5 | <u>FS</u>                                                        | <u>FD</u>  | <u>DC</u>  | <u>VC</u>  | <u>VDC</u>  | PENCHK      | <u>BT</u>  | DT         |
|   | 0.0                                                              | 0.0        | 0.0        | 0.0        | 0.0         | 0 ~         | 0.0        | 1.000e+20  |
| 6 | <u>SFS</u>                                                       | <u>SFM</u> | <u>SST</u> | <u>MST</u> | <u>SFST</u> | <u>SFMT</u> | FSF        | <u>VSF</u> |
|   | 0.0                                                              | 0.0        | 3.0000000  | 0.0        | 1.0000000   | 1.0000000   | 1.0000000  | 1.0000000  |

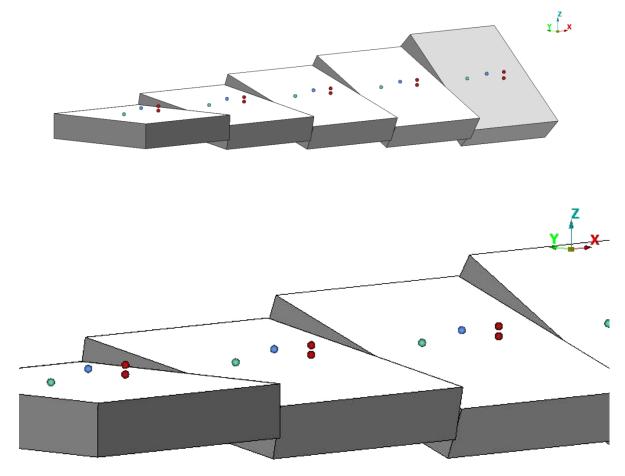
"Tunable" parameters: Friction (lateral adhesion) and damping



### **DROPLET SIZE**

- > The droplet size for water  $\underline{mist}$  systems can vary between 1000  $\mu m$  and 10  $\mu m$
- > Raindrop sizes typically range from 0.5 mm to 4 mm [2], with size distributions quickly decreasing past diameters larger than 2-2.5 mm.
- > As a starting point particle around **2mm** can be used (Sphere volume ~4µL)






### **SMALL MODEL**

- > SPH particles (water) contacting planes at different angles (Left) 0° to (Right) 45°
- > Particles at rest on surface (green) or initial velocity with a travel distance (blue)
- > Gravity field
- > Defaults on friction and damping (i.e. 0)

Particles (droplets) behaves like an elastic impact, i.e. blue particles bouncing at constant amplitude

Stationary particles slides of at low tilt angles

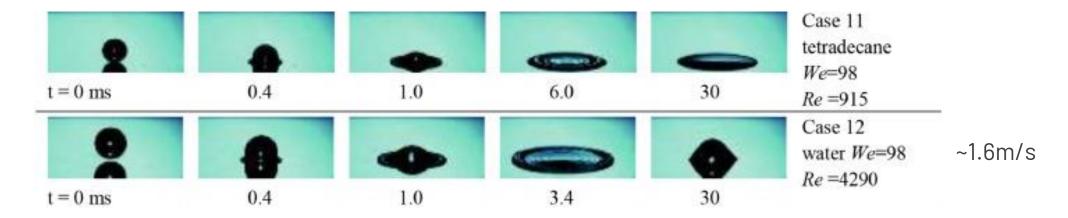




### **HYDROPHOBIC / HYDROPHILIC**



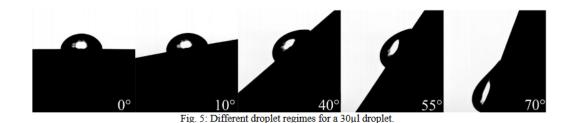
- > The wettability between a fluid and a solid depends on the difference in surface energy
- > Water has a surface tension of 72mN/m
- > Polymers, without any special treatment, the surface energy is typically in range 20-50mN/m


Polymers are (mostly) hydrophobic, i.e. water tend to form drops on the surface



### **DROP IMPACT ON SOLID SURFACE**

- > When a drop is impacting a surface, it will not bounce like a perfect elastic impact.
- > Specifically, the drop will deposit on the (dry) surface if the impact energy is relatively small [5]


Picture sequence shows fluid drop onto a flat stainless-steel surface with smooth surface [5]



No splashing observed for water drop on smooth surface up to 5m/s



### **DROP ON A TILTED PLANE**



- > A drop can stay stationary on a tilted plane if the angle is low
- > Larger drops slide off at a smaller angle of inclination
- > Critical surface inclination for drop sizes of 4 µl of de-ionized water on Teflon-coated glass was 18.8° [3]
- > On an acrylic surface the transition from stationary to moving ranges from ~35° to ~10° [4]

Friction can be assumed to be in the range 0.18 to 0.70 Use FS=FD=0.4 for simulations

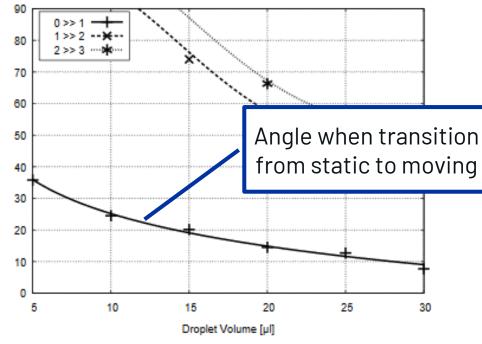
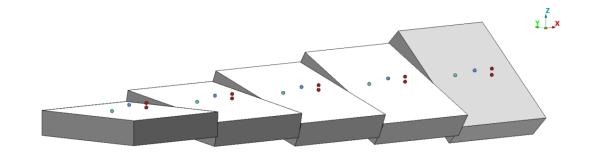
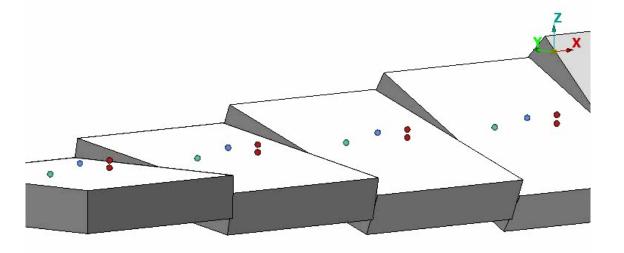



Fig. 6: Flow map for an angular velocity of 10°/s.



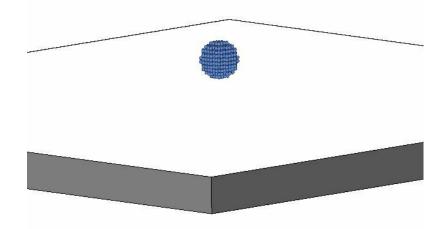

# **SMALL MODEL UPDATED**


## Contact settings

- > Friction FS=FD=0.4
- > VDC = 99.0 to damp out bouncing of SPH particles

#### Behavior more realistic

- > Stationary particles stay on lower slopes
- > Less bouncy



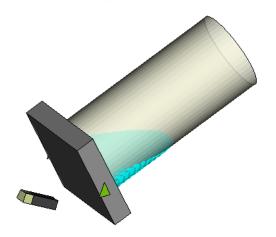


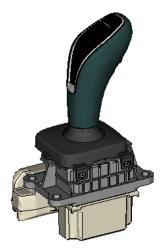



### **DETAILED DROP**

Water drop Ø2mm modelled with 552 SPH elements Low impact velocity ~0.15m/s (Drop height ~1mm) on a flat plate Gravity field




Drop breaks up and particles bounce

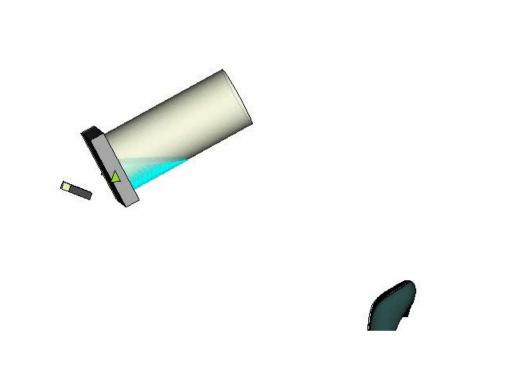

Break up of drop is not expected at such low impact velocity



## **MODEL OF TEST-SETUP**

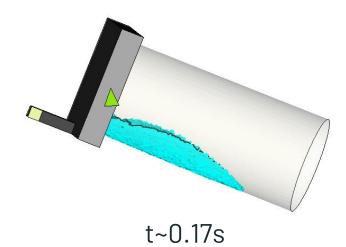
## Starting position



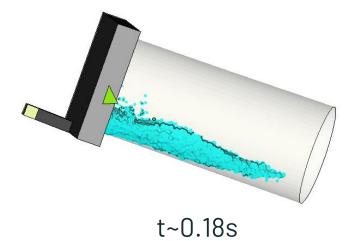



- > Zero initial velocity on all parts
- > Gravity is the only load
- > Fluid will need a "travel time" to reach test-object

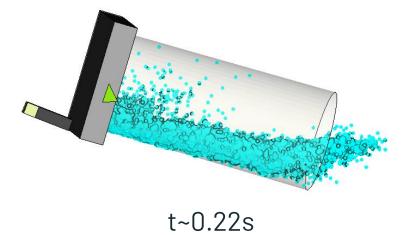



# **BEAKER TIPPING PHASE**

Beaker tipping due to gravity and bouncing on end-stop



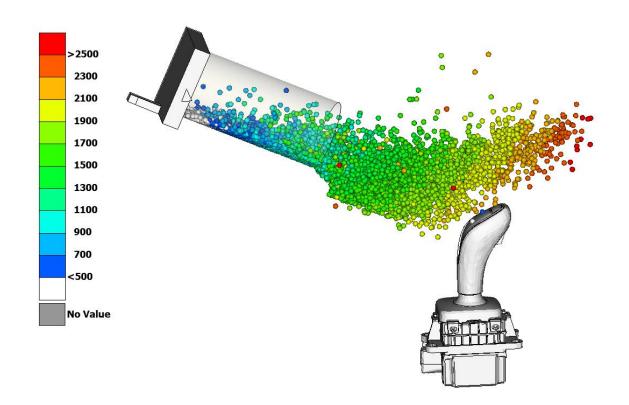




# **BEAKER END-STOP**



Before hitting end-stop

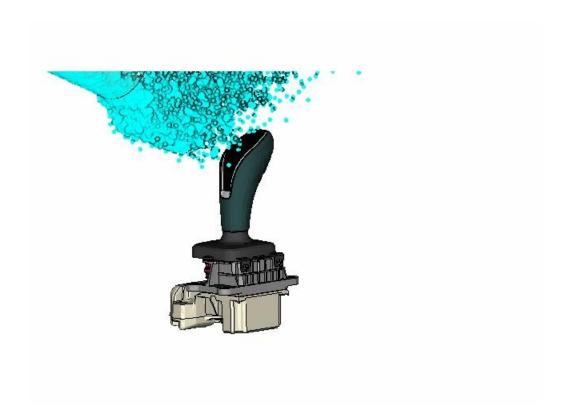



After hitting end-stop

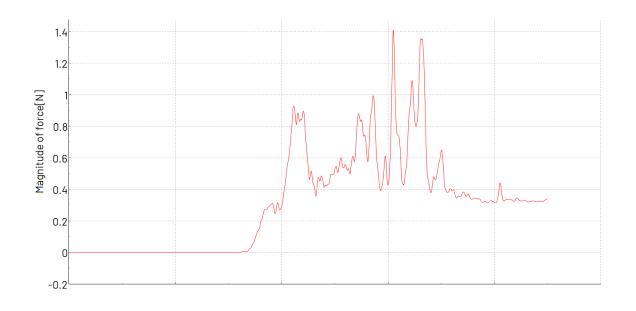




## **FLUID VELOCITY**


Velocity in mm/s




Compare to the terminal velocity of  $\varnothing 2mm$  rain drops which is 6 - 7m/s



## **SPLASHING ON TEST-OBJECT**



Force on test-object from fluid



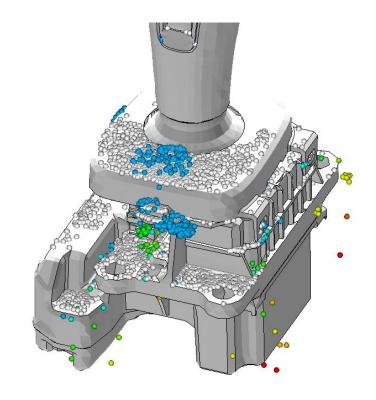
Fluid splashes from top to bottom

Low forces – assumption on structure modelled as rigid valid



# **SPLASHING ON TEST-OBJECT**




Fluid passing on the sides is one reason for low forces on test-object



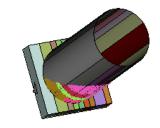
# **RESIDUAL FLUID**

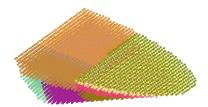
Fluid at end of simulation Note: Not all particles have zero velocity

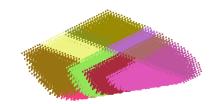







### **MPP DECOMPOSITION STUDY**


A small MPP decomposition study was performed to find the potential speed increase by using keywords:


\*CONTROL\_MPP\_DECOMPOSITION\_DISTRIBUTE\_SPH\_ELEMENTS

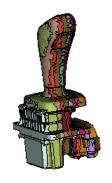
\*CONTROL\_MPP\_DECOMPOSITION\_TRANSFORMATION







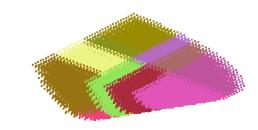



Baseline

TRANSFORMATION

Baseline

DISTRIBUTE\_SPH\_ELEMENTS








## **MPP DECOMPOSITION STUDY RESULTS**

| Distribute SPH | Transformation  | Solution time |
|----------------|-----------------|---------------|
| N              | -               | 100%          |
| Υ              | -               | 63%           |
| Υ              | SZ 0.0, SY 50.0 | 59%           |
| N              | SZ 0.0, SY 50.0 | 68%           |



Using \*CONTROL\_MPP\_DECOMPOSITION\_DISTRIBUTE\_SPH\_ELEMENTS was the biggest contributor to reducing the solution time.



### **REMARKS**

- > Capillary effect and surface tension not accounted for
- > Impact on surfaces and between particles seems to be elastic

"**All models are wrong, but some are useful"** - George Box



### **REFERENCES**

- [1] Livermore software technology, "LS-DYNA Keyword User's Manual", 2021
- [2] https://www.baranidesign.com/faq-articles/2020/1/19/rain-drop-size-and-speed-of-a-falling-rain-drop
- [3] Annapragada, S. R.; Murthy, J. Y.; and Garimella, S V., "Droplet Retention on an Incline" (2012). CTRC Research Publications. Paper 160.
- [4] T. Maurer, A. Mebus, U. Janoske, "Water Droplet Motion on an Inclining Surface", Proceedings of the 3rd International Conference on Fluid Flow, Heat and Mass Transfer, Ottawa, 2016
- [5] C. Tang, M. Qui, et al, Dynamics of droplet impact on solid surface with different roughness, International Journal of Multiphase Flow, Volume 96, November 2017



